On the radicals of semigroup rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 629-634.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author investigates properties of the radicals of semigroup rings, that can be considered as rings, graded by a band. A characterization of the Brown–McCoy radical of a band-graded ring is obtained. For a semigroup ring of a semilattice it is proved that $\rho(R[\Omega])\subseteq\rho(R)[\Omega]$ holds for any radical $\rho$ (in the sense of Kurosh–Amitsur). The technique of this paper is developed from the one used by W. D. Munn in [3].
@article{FPM_1996_2_2_a14,
     author = {G. B. Lungu},
     title = {On the radicals of semigroup rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {629--634},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a14/}
}
TY  - JOUR
AU  - G. B. Lungu
TI  - On the radicals of semigroup rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 629
EP  - 634
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a14/
LA  - ru
ID  - FPM_1996_2_2_a14
ER  - 
%0 Journal Article
%A G. B. Lungu
%T On the radicals of semigroup rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 629-634
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a14/
%G ru
%F FPM_1996_2_2_a14
G. B. Lungu. On the radicals of semigroup rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 629-634. http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a14/