Homogeneous orthogonal decompositions of commutative algebras and Hadamard matrices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1107-1110.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a commutative algebra is a free module over every its subalgebra of the family forming its homogeneous orthogonal decomposition. As a corollary the equivalence of notions of a Hadamard matrix and an orthogonal decomposition of a commutative algebra into the sum of two-dimensional subalgebras is deduced.
@article{FPM_1995_1_4_a20,
     author = {D. N. Ivanov},
     title = {Homogeneous orthogonal decompositions of commutative algebras and {Hadamard} matrices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1107--1110},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a20/}
}
TY  - JOUR
AU  - D. N. Ivanov
TI  - Homogeneous orthogonal decompositions of commutative algebras and Hadamard matrices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 1107
EP  - 1110
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a20/
LA  - ru
ID  - FPM_1995_1_4_a20
ER  - 
%0 Journal Article
%A D. N. Ivanov
%T Homogeneous orthogonal decompositions of commutative algebras and Hadamard matrices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 1107-1110
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a20/
%G ru
%F FPM_1995_1_4_a20
D. N. Ivanov. Homogeneous orthogonal decompositions of commutative algebras and Hadamard matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1107-1110. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a20/

[1] Ivanov D. N., “Ortogonalnye razlozheniya poluprostykh assotsiativnykh algebr”, Vestnik MGU. Ser. 1. Mat., mekh., 1988, no. 1, 9–14 | MR

[2] Ivanov D. N., “Teorema o podalgebrakh, obrazuyuschikh ortogonalnoe razlozhenie assotsiativnoi algebry”, Uspekhi matem. nauk, 44:2 (1989), 231–232 | MR

[3] Kholl M., Kombinatorika, Mir, M., 1970 | MR