Homogeneous orthogonal decompositions of commutative algebras and Hadamard matrices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1107-1110
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that a commutative algebra is a free module over every its subalgebra of the family forming its homogeneous orthogonal decomposition. As a corollary the equivalence of notions of a Hadamard matrix and an orthogonal decomposition of a commutative algebra into the sum of two-dimensional subalgebras is deduced.
@article{FPM_1995_1_4_a20,
author = {D. N. Ivanov},
title = {Homogeneous orthogonal decompositions of commutative algebras and {Hadamard} matrices},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1107--1110},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a20/}
}
TY - JOUR AU - D. N. Ivanov TI - Homogeneous orthogonal decompositions of commutative algebras and Hadamard matrices JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 1107 EP - 1110 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a20/ LA - ru ID - FPM_1995_1_4_a20 ER -
D. N. Ivanov. Homogeneous orthogonal decompositions of commutative algebras and Hadamard matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1107-1110. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a20/