Homogeneous orthogonal decompositions of commutative algebras and Hadamard matrices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1107-1110
It is shown that a commutative algebra is a free module over every its subalgebra of the family forming its homogeneous orthogonal decomposition. As a corollary the equivalence of notions of a Hadamard matrix and an orthogonal decomposition of a commutative algebra into the sum of two-dimensional subalgebras is deduced.
@article{FPM_1995_1_4_a20,
author = {D. N. Ivanov},
title = {Homogeneous orthogonal decompositions of commutative algebras and {Hadamard} matrices},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1107--1110},
year = {1995},
volume = {1},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a20/}
}
D. N. Ivanov. Homogeneous orthogonal decompositions of commutative algebras and Hadamard matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1107-1110. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a20/
[1] Ivanov D. N., “Ortogonalnye razlozheniya poluprostykh assotsiativnykh algebr”, Vestnik MGU. Ser. 1. Mat., mekh., 1988, no. 1, 9–14 | MR
[2] Ivanov D. N., “Teorema o podalgebrakh, obrazuyuschikh ortogonalnoe razlozhenie assotsiativnoi algebry”, Uspekhi matem. nauk, 44:2 (1989), 231–232 | MR
[3] Kholl M., Kombinatorika, Mir, M., 1970 | MR