Generalized identities with invertible variables for subrings of artinian rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1101-1105
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a prime subring with 1 of the matrix ring $D_k$ over a skew field $D$, $k\geq1$. Suppose that the center $C$ of $R$ is infinite and elements of $C$ belong to the center of $D_k$. Let $G$ be an elementary absolute irreducible subgroup of the group $U(R)$ of invertible elements of $R$ with a nonzero generalized identity with invertible variables $f\in R\langle X,X^{-1}\rangle$, then $R$ is a $PI$-ring.
@article{FPM_1995_1_4_a19,
author = {I. Z. Golubchik},
title = {Generalized identities with invertible variables for subrings of artinian rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1101--1105},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a19/}
}
TY - JOUR AU - I. Z. Golubchik TI - Generalized identities with invertible variables for subrings of artinian rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 1101 EP - 1105 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a19/ LA - ru ID - FPM_1995_1_4_a19 ER -
I. Z. Golubchik. Generalized identities with invertible variables for subrings of artinian rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1101-1105. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a19/