Generalized identities with invertible variables for subrings of artinian rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1101-1105
Let $R$ be a prime subring with 1 of the matrix ring $D_k$ over a skew field $D$, $k\geq1$. Suppose that the center $C$ of $R$ is infinite and elements of $C$ belong to the center of $D_k$. Let $G$ be an elementary absolute irreducible subgroup of the group $U(R)$ of invertible elements of $R$ with a nonzero generalized identity with invertible variables $f\in R\langle X,X^{-1}\rangle$, then $R$ is a $PI$-ring.
@article{FPM_1995_1_4_a19,
author = {I. Z. Golubchik},
title = {Generalized identities with invertible variables for subrings of artinian rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1101--1105},
year = {1995},
volume = {1},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a19/}
}
I. Z. Golubchik. Generalized identities with invertible variables for subrings of artinian rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1101-1105. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a19/
[1] Golubchik I. Z., Mikhalëv A. V., “Obobschennye gruppovye tozhdestva v klassicheskikh gruppakh”, Uspekhi mat. nauk, 35:6 (1980), 155–156 | MR | Zbl
[2] Golubchik I. Z., Mikhalv A. V., “Obobschennye gruppovye tozhdestva v klassicheskikh gruppakh”, Zap. nauch. sem. LOMI AN SSSR, 114 (1982), 96–119 | MR | Zbl
[3] Tomanov G. M\@., “Obobschennye gruppovye tozhdestva v lineinykh gruppakh”, Dokl. AN BSSR, 26:1 (1982), 9–12 | MR | Zbl
[4] Beidar. K. I., “Polupervichnye koltsa s obobschennym tozhdestvom”, Uspekhi mat. nauk, 32:4 (1977), 249–250 | MR | Zbl
[5] Bakhturin. Yu. A., Osnovnye struktury sovremennoi algebry, Nauka, M., 1990 | MR