On isomorphism of two bases in~$L_p$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1091-1094.

Voir la notice de l'article provenant de la source Math-Net.Ru

If the function system $\bigl\{A(t)e^{int};\ B(t)e^{-i(n+1)t}\bigr\}_{0}^{\infty}$ is a base in $L_p$ then it is isomorphic to the classic exponent system.
@article{FPM_1995_1_4_a17,
     author = {B. T. Bilalov},
     title = {On isomorphism of two bases in~$L_p$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1091--1094},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a17/}
}
TY  - JOUR
AU  - B. T. Bilalov
TI  - On isomorphism of two bases in~$L_p$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 1091
EP  - 1094
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a17/
LA  - ru
ID  - FPM_1995_1_4_a17
ER  - 
%0 Journal Article
%A B. T. Bilalov
%T On isomorphism of two bases in~$L_p$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 1091-1094
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a17/
%G ru
%F FPM_1995_1_4_a17
B. T. Bilalov. On isomorphism of two bases in~$L_p$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1091-1094. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a17/

[1] Sedletskii A. M., Uspekhi mat. nauk, 37:5(227) (1982), 51–95 | MR

[2] Moiseev E. I., DAN SSSR, 275:4 (1984), 794–798 | MR | Zbl

[3] Devdariani G. G., Bazisnost nekotorykh spets. sistem sobstvennykh funktsii nesamosopryazhennykh differentsialnykh operatorov, Dis. ... kand. fiz.-mat. nauk, M., 1986

[4] Sedletskii A. M., DAN SSSR, 301:5 (1988), 1053–1056 | MR

[5] Bilalov B. T., Differents. uravneniya, 26:1 (1990), 10–16 | MR

[6] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, M., L., 1950, 336 pp. | MR