Some remarks on the tubes of negative curvature
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1033-1043.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1963 L. Nirenberg has showed that the rigidity of a so-called $T$-surface depends on the nonexistence of two closed asymptotic lines on the tubes of negative curvature. In the article we give some conditions sufficient for nonexistence of closed asymptotic curves and besides we formulate and comment a number of problems concerning the exterior geometric structure of the tubes of negative curvature.
@article{FPM_1995_1_4_a12,
     author = {I. Kh. Sabitov},
     title = {Some remarks on the tubes of negative curvature},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1033--1043},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a12/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Some remarks on the tubes of negative curvature
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 1033
EP  - 1043
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a12/
LA  - ru
ID  - FPM_1995_1_4_a12
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Some remarks on the tubes of negative curvature
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 1033-1043
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a12/
%G ru
%F FPM_1995_1_4_a12
I. Kh. Sabitov. Some remarks on the tubes of negative curvature. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1033-1043. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a12/

[1] A. D. Aleksandrov, “Ob odnom klasse zamknutykh poverkhnostei”, Mat. sbornik, 4:1 (1938), 69–77

[2] L. Nirenberg, “Rigidity of a class of closed surfaces”, Non linear problems. University of Visconsin Press, 1963, 177–193 | MR | Zbl

[3] M. Shiffman, “On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes”, Ann. of Math., 63:2 (1956), 77–90 | DOI | MR | Zbl

[4] D. Gilbert, S. Kon-Fossen, Naglyadnaya geometriya, Fizmatgiz, 1981, 344 pp. | MR

[5] I. Kh. Sabitov, “Minimalnaya poverkhnost kak diagramma vraschenii sfery”, Matem. zametki, 2:6 (1967), 645–656 | MR