Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_1995_1_3_a9, author = {A. S. Osipov}, title = {On a determinant criterion of weak-perfectness for systems of functions holomorphic in infinity and their connection with some classes of high order difference operators}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {711--727}, publisher = {mathdoc}, volume = {1}, number = {3}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a9/} }
TY - JOUR AU - A. S. Osipov TI - On a determinant criterion of weak-perfectness for systems of functions holomorphic in infinity and their connection with some classes of high order difference operators JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 711 EP - 727 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a9/ LA - ru ID - FPM_1995_1_3_a9 ER -
%0 Journal Article %A A. S. Osipov %T On a determinant criterion of weak-perfectness for systems of functions holomorphic in infinity and their connection with some classes of high order difference operators %J Fundamentalʹnaâ i prikladnaâ matematika %D 1995 %P 711-727 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a9/ %G ru %F FPM_1995_1_3_a9
A. S. Osipov. On a determinant criterion of weak-perfectness for systems of functions holomorphic in infinity and their connection with some classes of high order difference operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 711-727. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a9/
[1] A. I. Aptekarev, E. M. Nikishin, “Zadacha rasseyaniya dlya diskretnogo operatora Shturma–Liuvillya”, Mat. sbornik, 121 (163) (1983), 327–358 | MR | Zbl
[2] N. I. Akhiezer, Klassicheskaya problema momentov, Nauka, M., 1961
[3] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR
[4] Yu. M. Berezanskii, “Integrirovanie nelineinykh raznostnykh uravnenii metodom obratnoi spektralnoi zadachi”, Dokl. AN SSSR, 281:1 (1985), 16–19 | MR | Zbl
[5] O. I. Bogoyavlenskii, Oprokidyvayuschiesya solitony, Nauka, M., 1991 | MR | Zbl
[6] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl
[7] M. I. Gekhtman, “Integrirovanie neabelevykh tsepochek tipa Tody”, Funkts. analiz i ego prilozh., 24:3 (1990), 68–69 | MR
[8] G. Sh. Guseinov, “Opredelenie beskonechnoi nesamosopryazhennoi matritsy Yakobi po ee obobschennoi spektralnoi funktsii”, Mat. zametki, 23:2 (1978), 237–248 | MR | Zbl
[9] N. V. Zhernakov, “Pryamaya i obratnaya zadachi dlya periodicheskoi yakobievoi matritsy”, Ukr. mat. zhurnal, 38:6 (1986), 785–788 | MR | Zbl
[10] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Mat. sbornik, 185:6 (1994), 79–100 | MR | Zbl
[11] I. M. Krichever, “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, Uspekhi mat. nauk, 33: 4 (1978), 215–216 | MR | Zbl
[12] C. B. Manakov, “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, Zhurnal eksperiment. i teoretich. fiziki, 67:2 (1974), 543–555 | MR
[13] E. M. Nikishin, “Diskretnyi operator Shturma–Liuvillya i nekotorye zadachi teorii funktsii”, Tr. seminara im. I. G. Petrovskogo, 10 (1984), 3–77 | MR | Zbl
[14] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl
[15] A. S. Osipov, Integrirovanie nelineinykh tsepochek tipa Volterra metodom obratnoi zadachi, Dep. v VINITI, 1994, 2096-B 94
[16] V. A. Yurko, Obratnaya zadacha dlya differentsialnykh operatorov, Izd-vo Sarat. un-ta, Saratov, 1989