On a determinant criterion of weak-perfectness for systems of functions holomorphic in infinity and their connection with some classes of high order difference operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 711-727.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-to-one correspondence is established between the systems of functions holomorphic in infinity characterized by convergence of their simultaneous Hermit–Pade approximants and some classes of difference operators applied to the integration of nonlinear lattices.
@article{FPM_1995_1_3_a9,
     author = {A. S. Osipov},
     title = {On a determinant criterion of weak-perfectness for systems of functions holomorphic in infinity and their connection with some classes of high order difference operators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {711--727},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a9/}
}
TY  - JOUR
AU  - A. S. Osipov
TI  - On a determinant criterion of weak-perfectness for systems of functions holomorphic in infinity and their connection with some classes of high order difference operators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 711
EP  - 727
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a9/
LA  - ru
ID  - FPM_1995_1_3_a9
ER  - 
%0 Journal Article
%A A. S. Osipov
%T On a determinant criterion of weak-perfectness for systems of functions holomorphic in infinity and their connection with some classes of high order difference operators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 711-727
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a9/
%G ru
%F FPM_1995_1_3_a9
A. S. Osipov. On a determinant criterion of weak-perfectness for systems of functions holomorphic in infinity and their connection with some classes of high order difference operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 711-727. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a9/

[1] A. I. Aptekarev, E. M. Nikishin, “Zadacha rasseyaniya dlya diskretnogo operatora Shturma–Liuvillya”, Mat. sbornik, 121 (163) (1983), 327–358 | MR | Zbl

[2] N. I. Akhiezer, Klassicheskaya problema momentov, Nauka, M., 1961

[3] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR

[4] Yu. M. Berezanskii, “Integrirovanie nelineinykh raznostnykh uravnenii metodom obratnoi spektralnoi zadachi”, Dokl. AN SSSR, 281:1 (1985), 16–19 | MR | Zbl

[5] O. I. Bogoyavlenskii, Oprokidyvayuschiesya solitony, Nauka, M., 1991 | MR | Zbl

[6] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[7] M. I. Gekhtman, “Integrirovanie neabelevykh tsepochek tipa Tody”, Funkts. analiz i ego prilozh., 24:3 (1990), 68–69 | MR

[8] G. Sh. Guseinov, “Opredelenie beskonechnoi nesamosopryazhennoi matritsy Yakobi po ee obobschennoi spektralnoi funktsii”, Mat. zametki, 23:2 (1978), 237–248 | MR | Zbl

[9] N. V. Zhernakov, “Pryamaya i obratnaya zadachi dlya periodicheskoi yakobievoi matritsy”, Ukr. mat. zhurnal, 38:6 (1986), 785–788 | MR | Zbl

[10] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Mat. sbornik, 185:6 (1994), 79–100 | MR | Zbl

[11] I. M. Krichever, “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, Uspekhi mat. nauk, 33: 4 (1978), 215–216 | MR | Zbl

[12] C. B. Manakov, “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, Zhurnal eksperiment. i teoretich. fiziki, 67:2 (1974), 543–555 | MR

[13] E. M. Nikishin, “Diskretnyi operator Shturma–Liuvillya i nekotorye zadachi teorii funktsii”, Tr. seminara im. I. G. Petrovskogo, 10 (1984), 3–77 | MR | Zbl

[14] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[15] A. S. Osipov, Integrirovanie nelineinykh tsepochek tipa Volterra metodom obratnoi zadachi, Dep. v VINITI, 1994, 2096-B 94

[16] V. A. Yurko, Obratnaya zadacha dlya differentsialnykh operatorov, Izd-vo Sarat. un-ta, Saratov, 1989