On the general linear group over weak Noetherian associative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 661-668.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a weak Noetherian algebra with unity element over an infinite field, $I$ an ideal in $R$, $n\geq3$, $E_n(R)$ the elementary subgroup in the general linear group $GL_n(R)$, $E_n(R,I)$ the normal subgroup in $E_n(R)$ generated by the elementary matrices $1+\lambda e_{ij}$, $\lambda\in I$, $1\leq i\neq j\leq n$, $GL_n(R,I)$ the kernel and $C_n(R,I)$ the preimage of the center of the homomorphism $GL_n(R)\to GL_n(R/I)$ respectively. It is proved that if $G$ is a subgroup of $GL_n(R)$, then it is normalized by $E_n(R)$ if and only if $E_n(R,F)\subseteq G\subseteq C_n(R,F)$ for some ideal $F$ of $R$; $[C_n(R,F),E_n(R)]=E_n(R,F)$ and in particular the groups $E_n(R)$ and $E_n(R,F)$ are normal in $GL_n(R)$ for all ideals $F$ of $R$.
@article{FPM_1995_1_3_a6,
     author = {I. Z. Golubchik},
     title = {On the general linear group over weak {Noetherian} associative algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {661--668},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a6/}
}
TY  - JOUR
AU  - I. Z. Golubchik
TI  - On the general linear group over weak Noetherian associative algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 661
EP  - 668
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a6/
LA  - ru
ID  - FPM_1995_1_3_a6
ER  - 
%0 Journal Article
%A I. Z. Golubchik
%T On the general linear group over weak Noetherian associative algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 661-668
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a6/
%G ru
%F FPM_1995_1_3_a6
I. Z. Golubchik. On the general linear group over weak Noetherian associative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 661-668. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a6/

[1] Golubchik I. Z., Markov V. T., “Lokalizatsionnaya razmernost $PI$-kolets”, Trudy sem. im. I. G. Petrovskogo, 6, Izd-vo MGU, M., 1981, 39–46 | MR

[2] Wilson J. S., “The normal and subnormal structure of general lineal groups”, Proc. Cambr. Phil. SOS., 71, no. 2, 1972, 163–177 | MR | Zbl

[3] Golubchik I. Z., “O polnoi lineinoi gruppe nad assotsiativnym koltsom”, UMN, 28:3 (1973), 179–180 | MR | Zbl

[4] Suslin A. A., “O strukture spetsialnoi lineinoi gruppy nad koltsom mnogochlenov”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 235–252 | MR | Zbl

[5] Tulenbaev V. N., “Multiplikator Shura gruppy elementarnykh matrits konechnogo poryadka”, Zap. nauch. semin. LOMI, 86 (1979), 162–169 | MR | Zbl

[6] Borevich Z. M., Vavilov N. A., “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. MIAN SSSR, 165, 1984, 24–42 | MR

[7] Vaserstein, “On the normal subgroups of $GL_n$ over a ring”, Algebraic K-theory, Springer Lecture Notes Math., 854, 1981, 454–465 | MR

[8] Golubchik I. Z., “O podgruppakh polnoi lineinoi gruppy $GL_n(R)$ nad assotsiativnym koltsom $R$”, UMN, 39:1, 125–126 | MR | Zbl

[9] Golubchik I. Z., “Kommutatornye formuly v gruppe $GL_n(R)$ nad assotsiativnym koltsom $R$”, XI Vsesoyuznyi simpozium po teorii grupp, Sverdlovsk, 1989, 35–36

[10] Golubchik I. Z., Mikhalëv A. V., “O gruppe elementarnykh matrits nad $PI$-koltsami”, Issl. po algebre. Tbilisi, 1985, 20–24

[11] Khlebutin S. G., “Nekotorye svoistva elementarnoi podgruppy”, Algebra, logika i teoriya chisel, Izd-vo MGU, M., 1986, 86–90 | MR

[12] Suprunenko D. A., Gruppy matrits, Nauka, M., 1972 | MR

[13] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl