The main series of nonhomogeneous systems of hydrodynamic type with constant matrices possessing $1^{st}$ order conservation laws
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 641-648
Let $u_t^i=v_iu_x^i+f_i(u)$, $i=1,\ldots,n$ be a system of PDE with constant $v_i$. We give a classification of such systems possessing nontrivial conservation laws $dg(u,u_x)/dt=dh(u,u_x)/dx$ and their explicit form for two main series. The third (and the last) main series is shown to be nontrivial. Some examples of such systems are new.
@article{FPM_1995_1_3_a4,
author = {E. I. Ganzha},
title = {The main series of nonhomogeneous systems of hydrodynamic type with constant matrices possessing $1^{st}$ order conservation laws},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {641--648},
year = {1995},
volume = {1},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a4/}
}
TY - JOUR
AU - E. I. Ganzha
TI - The main series of nonhomogeneous systems of hydrodynamic type with constant matrices possessing $1^{st}$ order conservation laws
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 1995
SP - 641
EP - 648
VL - 1
IS - 3
UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a4/
LA - ru
ID - FPM_1995_1_3_a4
ER -
%0 Journal Article
%A E. I. Ganzha
%T The main series of nonhomogeneous systems of hydrodynamic type with constant matrices possessing $1^{st}$ order conservation laws
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 641-648
%V 1
%N 3
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a4/
%G ru
%F FPM_1995_1_3_a4
E. I. Ganzha. The main series of nonhomogeneous systems of hydrodynamic type with constant matrices possessing $1^{st}$ order conservation laws. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 641-648. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a4/
[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, M., 1980 | MR
[2] G. Tzitzéica, “Sur une nouvelle classe de surfaces”, C. R. Acad. Sci. Paris, 150 (1910), 955–956
[3] A. B. Zhiber, N. Kh. Ibragimov, A. B. Shabat, “Uravneniya tipa Liuvillya”, DAN SSSR, 249:1 (1979), 26–29 | MR | Zbl
[4] A. B. Zhiber, A. B. Shabat, “Sistemy uravnenii $u_x=p(u,v)$, $v_y=q(u,v)$, obladayuschie simmetriyami”, DAN SSSR, 247:5 (1979), 1103–1107 | MR