One-sided nil-ideals and generalized polynomial identities of semi-prime rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 809-811.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is shown that semi-prime rings (rings with strong identities) have no one-sided ideals with Gardner's property (r) [1] (respectively, no non-zero one-sided nil-ideals).
@article{FPM_1995_1_3_a16,
     author = {Yu. A. Terekhova},
     title = {One-sided nil-ideals and generalized polynomial identities of semi-prime rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {809--811},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a16/}
}
TY  - JOUR
AU  - Yu. A. Terekhova
TI  - One-sided nil-ideals and generalized polynomial identities of semi-prime rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 809
EP  - 811
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a16/
LA  - ru
ID  - FPM_1995_1_3_a16
ER  - 
%0 Journal Article
%A Yu. A. Terekhova
%T One-sided nil-ideals and generalized polynomial identities of semi-prime rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 809-811
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a16/
%G ru
%F FPM_1995_1_3_a16
Yu. A. Terekhova. One-sided nil-ideals and generalized polynomial identities of semi-prime rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 809-811. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a16/

[1] B. J. Gardner, “Some nil rings properties related to T-nilpotence”, Bull. Austral. Math. Soc., 46 (1992), 519–523 | DOI | MR | Zbl

[2] Wallace S. Martindale, “Prime rings satisfying a generalized polynomial identity”, J. Algebra, 12 (1969), 576–584 | DOI | MR | Zbl

[3] I. N. Herstein, Topics in ring theory, Univ. Chicago Press, Chicago, 1969 | MR | Zbl

[4] I. Lambek, Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[5] K. I. Beidar, “Koltsa s obobschennymi tozhdestvami II”, Vestnik Mosk. un-ta. Matem., mekhan., 1977, 3

[6] K. I. Beidar, “Koltsa s obobschennymi tozhdestvami IV”, Vestnik Mosk. un-ta. Matem., mekhan., 1980, 4

[7] K. I. Beidar, Koltsa s obobschennymi tozhdestvami:, Dis. ... kand. fiz.-mat. nauk, M., 1977