One-sided nil-ideals and generalized polynomial identities of semi-prime rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 809-811
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper it is shown that semi-prime rings (rings with strong identities) have no one-sided ideals with Gardner's property (r) [1] (respectively, no non-zero one-sided nil-ideals).
@article{FPM_1995_1_3_a16,
author = {Yu. A. Terekhova},
title = {One-sided nil-ideals and generalized polynomial identities of semi-prime rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {809--811},
year = {1995},
volume = {1},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a16/}
}
Yu. A. Terekhova. One-sided nil-ideals and generalized polynomial identities of semi-prime rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 809-811. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a16/
[1] B. J. Gardner, “Some nil rings properties related to T-nilpotence”, Bull. Austral. Math. Soc., 46 (1992), 519–523 | DOI | MR | Zbl
[2] Wallace S. Martindale, “Prime rings satisfying a generalized polynomial identity”, J. Algebra, 12 (1969), 576–584 | DOI | MR | Zbl
[3] I. N. Herstein, Topics in ring theory, Univ. Chicago Press, Chicago, 1969 | MR | Zbl
[4] I. Lambek, Koltsa i moduli, Mir, M., 1971 | MR | Zbl
[5] K. I. Beidar, “Koltsa s obobschennymi tozhdestvami II”, Vestnik Mosk. un-ta. Matem., mekhan., 1977, 3
[6] K. I. Beidar, “Koltsa s obobschennymi tozhdestvami IV”, Vestnik Mosk. un-ta. Matem., mekhan., 1980, 4
[7] K. I. Beidar, Koltsa s obobschennymi tozhdestvami:, Dis. ... kand. fiz.-mat. nauk, M., 1977