On asymptotic behavior of solutions of linear high order differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 801-804.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on asymptotic equivalence of solutions of equations $y^{(n)}=p(t)y$ and $u^{(n)}=q(t)u$ is proved.
@article{FPM_1995_1_3_a14,
     author = {M. Z. Garaev},
     title = {On asymptotic behavior of solutions of linear high order differential equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {801--804},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a14/}
}
TY  - JOUR
AU  - M. Z. Garaev
TI  - On asymptotic behavior of solutions of linear high order differential equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 801
EP  - 804
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a14/
LA  - ru
ID  - FPM_1995_1_3_a14
ER  - 
%0 Journal Article
%A M. Z. Garaev
%T On asymptotic behavior of solutions of linear high order differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 801-804
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a14/
%G ru
%F FPM_1995_1_3_a14
M. Z. Garaev. On asymptotic behavior of solutions of linear high order differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 801-804. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a14/

[1] I. T. Kiguradze, T. A. Chanturiya, Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | Zbl

[2] Rab M., “Asymptotische Eigenschaften der Lösungen der Differentialgleichung $y''+A(x)y=0$”, Chekhosl. mat. zh., 8:4 (1958), 513–519 | MR | Zbl