Fields of definition of rational functions of one variable with three critical values
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 781-799
Voir la notice de l'article provenant de la source Math-Net.Ru
Rational functions of one complex variable with three critical values are considered. According to Grothendieck theory, such functions are classified by the isotopic classes of the connected spherical graphs. By a suitable fractional-linear variable substitution these coefficients can be transformed to algebraic numbers. The paper is devoted to the problem of minimization of irrationality degrees of these coefficients.
@article{FPM_1995_1_3_a13,
author = {V. O. Filimonenkov and G. B. Shabat},
title = {Fields of definition of rational functions of one variable with three critical values},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {781--799},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a13/}
}
TY - JOUR AU - V. O. Filimonenkov AU - G. B. Shabat TI - Fields of definition of rational functions of one variable with three critical values JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 781 EP - 799 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a13/ LA - ru ID - FPM_1995_1_3_a13 ER -
%0 Journal Article %A V. O. Filimonenkov %A G. B. Shabat %T Fields of definition of rational functions of one variable with three critical values %J Fundamentalʹnaâ i prikladnaâ matematika %D 1995 %P 781-799 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a13/ %G ru %F FPM_1995_1_3_a13
V. O. Filimonenkov; G. B. Shabat. Fields of definition of rational functions of one variable with three critical values. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 781-799. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a13/