Fields of definition of rational functions of one variable with three critical values
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 781-799

Voir la notice de l'article provenant de la source Math-Net.Ru

Rational functions of one complex variable with three critical values are considered. According to Grothendieck theory, such functions are classified by the isotopic classes of the connected spherical graphs. By a suitable fractional-linear variable substitution these coefficients can be transformed to algebraic numbers. The paper is devoted to the problem of minimization of irrationality degrees of these coefficients.
@article{FPM_1995_1_3_a13,
     author = {V. O. Filimonenkov and G. B. Shabat},
     title = {Fields of definition of rational functions of one variable with three critical values},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {781--799},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a13/}
}
TY  - JOUR
AU  - V. O. Filimonenkov
AU  - G. B. Shabat
TI  - Fields of definition of rational functions of one variable with three critical values
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 781
EP  - 799
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a13/
LA  - ru
ID  - FPM_1995_1_3_a13
ER  - 
%0 Journal Article
%A V. O. Filimonenkov
%A G. B. Shabat
%T Fields of definition of rational functions of one variable with three critical values
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 781-799
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a13/
%G ru
%F FPM_1995_1_3_a13
V. O. Filimonenkov; G. B. Shabat. Fields of definition of rational functions of one variable with three critical values. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 781-799. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a13/