Noetherian semiprime rings and distributivity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 767-779
Cet article a éte moissonné depuis la source Math-Net.Ru
Theorem 1 is the main result of the article. Theorem 1. The following conditions are equivalent: (1) $A$ is a right distributive right noetherian semiprime ring with finite left Goldie dimension; (2) $A$ is a left distributive left noetherian semiprime ring with finite right Goldie dimension; (3) $A$ is a finite direct product of invariant hereditary noetherian domains.
@article{FPM_1995_1_3_a12,
author = {A. A. Tuganbaev},
title = {Noetherian semiprime rings and distributivity},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {767--779},
year = {1995},
volume = {1},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a12/}
}
A. A. Tuganbaev. Noetherian semiprime rings and distributivity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 767-779. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a12/
[1] Tuganbaev A. A., “Distributivnye koltsa i moduli”, Matem. zametki, 47:2 (1990), 115–123 | MR
[2] Feis K., Algebra: koltsa, moduli i kategorii, t. 1, Mir, M., 1977
[3] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR
[4] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR
[5] Barnard A., “Multiplication modules”, J. Algebra, 71:4 (1981), 174–180 | DOI | MR
[6] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer Verlag, Berlin, 1975 | MR | Zbl
[7] Feis K., Algebra: koltsa, moduli i kategorii, t. 2, Mir, M., 1979 | MR
[8] Tuganbaev A. A., “O levoi distributivnosti distributivnykh sprava kolets”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 289–300 | MR | Zbl