New examples of nonnegative trigonometric polynomials with integer coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 581-612
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper it is proved that for any positive integer $n$ and any number $\lambda\geq1$ the following estimate holds:
$$
2\lambda n^{\alpha}+\sum_{k=1}^{s}\Bigl[\lambda\left(\frac{n}{k}\right)^{\alpha}-1\Bigr]\cos(kx)>0
$$
for all $x$ and $s=0,\ldots,n$. Here the braces mean the integer part of a number, and $\alpha\in(0,1)$ is the unique root of the equation $\int_{0}^{3\pi/2}t^{-\alpha}\cos t\,dt=0$. It is proved also that for any positive integer $n$ and any numbers $q\geq2$ and $\lambda \geq sq^q$ the following estimate is true:
$$
4\lambda n^{1/q}+\sum_{k=1}^{n}\Bigl[\lambda\Bigl(\left(
\frac{n}{k}\right)^{1/q}-1\Bigr)+1\Bigl]\cos(kx)>0
$$
for all $x$. From these two main results and similar ones new estimates in some extremal problems connected with nonnegative trigonometric polynomials with integer coefficients are deduced.
@article{FPM_1995_1_3_a1,
author = {A. S. Belov},
title = {New examples of nonnegative trigonometric polynomials with integer coefficients},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {581--612},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a1/}
}
A. S. Belov. New examples of nonnegative trigonometric polynomials with integer coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 581-612. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a1/