New examples of nonnegative trigonometric polynomials with integer coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 581-612.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is proved that for any positive integer $n$ and any number $\lambda\geq1$ the following estimate holds: $$ 2\lambda n^{\alpha}+\sum_{k=1}^{s}\Bigl[\lambda\left(\frac{n}{k}\right)^{\alpha}-1\Bigr]\cos(kx)>0 $$ for all $x$ and $s=0,\ldots,n$. Here the braces mean the integer part of a number, and $\alpha\in(0,1)$ is the unique root of the equation $\int_{0}^{3\pi/2}t^{-\alpha}\cos t\,dt=0$. It is proved also that for any positive integer $n$ and any numbers $q\geq2$ and $\lambda \geq sq^q$ the following estimate is true: $$ 4\lambda n^{1/q}+\sum_{k=1}^{n}\Bigl[\lambda\Bigl(\left( \frac{n}{k}\right)^{1/q}-1\Bigr)+1\Bigl]\cos(kx)>0 $$ for all $x$. From these two main results and similar ones new estimates in some extremal problems connected with nonnegative trigonometric polynomials with integer coefficients are deduced.
@article{FPM_1995_1_3_a1,
     author = {A. S. Belov},
     title = {New examples of nonnegative trigonometric polynomials with integer coefficients},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {581--612},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a1/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - New examples of nonnegative trigonometric polynomials with integer coefficients
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 581
EP  - 612
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a1/
LA  - ru
ID  - FPM_1995_1_3_a1
ER  - 
%0 Journal Article
%A A. S. Belov
%T New examples of nonnegative trigonometric polynomials with integer coefficients
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 581-612
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a1/
%G ru
%F FPM_1995_1_3_a1
A. S. Belov. New examples of nonnegative trigonometric polynomials with integer coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 3, pp. 581-612. http://geodesic.mathdoc.fr/item/FPM_1995_1_3_a1/

[1] Odlyzko A. M., “Minima of cosine sums and maxima of polynomials on the unit circle”, J. London Math. Soc., 26:3 (1982), 412–420 | DOI | MR | Zbl

[2] Kolountzakis M. N., “On nonnegative cosine polynomials with nonnegative integral coefficients”, Proc. Amer. Math. Soc., 120, no. 1, 1994, 157–163 | MR | Zbl

[3] Erdős P., Szekeres G., “On the product $\prod_{k=1}^n(1-z^{a_k})$”, Acad. Serbe Sci. Publ. Inst. Math., 13 (1959), 29–34 | MR | Zbl

[4] Belov A. S., “Ob odnoi ekstremalnoi zadache o minimume trigonometricheskogo polinoma”, Izvestiya RAN. Seriya matem., 57:6 (1993), 212–226 | MR | Zbl

[5] Belov A. S., “O koeffitsientakh trigonometricheskikh kosinus-ryadov s neotritsatelnymi chastnymi summami”, Trudy MIAN SSSR, 190, Nauka, M., 1989, 3–21 | MR

[6] Zigmund A., Trigonometricheskie ryady, t. 1, Mir, M., 1965 | MR

[7] Konyagin S. V., Predstavlenie funktsii trigonometricheskimi ryadami, Dis. ... dokt. fiz.-mat. nauk, MGU, M., 1989

[8] Chowla S., “Some applications of a method of A. Selberg”, Journ. reine und angew. Math., 217 (1965), 128–132 | DOI | MR | Zbl

[9] Bourgain J., “Sur le minimum d'une somme de cosinus”, Acta Arithm., 45:4 (1986), 381–389 | MR | Zbl