The definition of acoustic signal propagation domain
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 431-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

The propagation domain of solution of the Burgers equation with initial function which is equal to zero outside an arbitrary segment is considered. The precise and asymptotical estimations of solution carrier in arbitrary cutting are derived. An algorithm for the carrier determination for arbitrary initial function is presented. The results have numerical applications.
@article{FPM_1995_1_2_a6,
     author = {E. A. Lapshin},
     title = {The definition of acoustic signal propagation domain},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {431--454},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a6/}
}
TY  - JOUR
AU  - E. A. Lapshin
TI  - The definition of acoustic signal propagation domain
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 431
EP  - 454
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a6/
LA  - ru
ID  - FPM_1995_1_2_a6
ER  - 
%0 Journal Article
%A E. A. Lapshin
%T The definition of acoustic signal propagation domain
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 431-454
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a6/
%G ru
%F FPM_1995_1_2_a6
E. A. Lapshin. The definition of acoustic signal propagation domain. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 431-454. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a6/

[1] O. A. Vasileva, A. A. Karabutov, E. A. Lapshin, O. V. Rudenko, Vzaimodeistvie odnomernykh voln v sredakh bez dispersii, Izd-vo Mosk. un-ta, M., 1983

[2] V. G. Sushko, “O priblizhennykh resheniyakh odnogo kvazilineinogo uravneniya s malym parametrom pri starshei proizvodnoi”, Nekotorye primeneniya metoda setok v gazovoi dinamike, Vyp. 2, M., 1971, 145–251