On class of nilpotency of obstruction to embeddability of algebras satisfying Capelli identities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 409-430.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a finitely generated algebra $L$ satisfying Capelli identities of order $n+1$ over an arbitrary field there exists a nilpotent ideal $I$ such that the class of nilpotency of the ideal $I$ is not greater than $n$ and the quotient algebra $L/I$ is embeddable. It is shown that this bound of class of nilpotency of obstruction (ideal $I$) in the class of algebras of finite signature cannot be improved.
@article{FPM_1995_1_2_a5,
     author = {K. A. Zubrilin},
     title = {On class of nilpotency of obstruction to embeddability of algebras satisfying {Capelli} identities},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {409--430},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a5/}
}
TY  - JOUR
AU  - K. A. Zubrilin
TI  - On class of nilpotency of obstruction to embeddability of algebras satisfying Capelli identities
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 409
EP  - 430
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a5/
LA  - ru
ID  - FPM_1995_1_2_a5
ER  - 
%0 Journal Article
%A K. A. Zubrilin
%T On class of nilpotency of obstruction to embeddability of algebras satisfying Capelli identities
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 409-430
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a5/
%G ru
%F FPM_1995_1_2_a5
K. A. Zubrilin. On class of nilpotency of obstruction to embeddability of algebras satisfying Capelli identities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 409-430. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a5/

[1] Ananin A. Z., “Predstavimye mnogoobraziya algebr”, Algebra i logika, 28:2 (1989), 127–143 | MR

[2] Beidar K. I., “K teoremam A. I. Maltseva o matrichnykh predstavleniyakh algebr”, Uspekhi matem. nauk, 41:5 (1986), 161–162 | MR | Zbl

[3] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[4] Zaitsev M. V., “Lokalno predstavimye mnogoobraziya algebr Li”, Matem. sbornik, 180:6 (1989), 798–808 | MR

[5] Zubrilin K. A., “Algebry, udovletvoryayuschie tozhdestvam Kapelli”, Matem. sbornik, 186:3 (1995), 53–64 | MR | Zbl

[6] Maltsev A. I., “O predstavleniyakh beskonechnykh algebr”, Matem. sbornik, 13:2–3 (1943), 263–286

[7] Markov V. T., “O lokalno matrichnykh mnogoobraziyakh assotsiativnykh algebr”, Vestn. MGU. Matem., mekhan., 1975, no. 6, 118–119

[8] Markov V. T., “O predstavimosti matritsami konechno porozhdennykh $PI$-algebr”, Vestn. MGU. Matem., mekhan., 1989, no. 2, 17–20 | Zbl

[9] Pchelintsev S. V., “Lokalno neterovy i lokalno predstavimye mnogoobraziya alternativnykh algebr”, Sib. matem. zhurn., 30:1 \mbox (1989), 134–144 | MR

[10] Razmyslov Yu. P., “O radikale Dzhekobsona v $PI$-algebrakh”, Algebra i logika, 13:3 (1974), 337–360 | MR | Zbl

[11] Razmyslov Yu. P., “Algebry, udovletvoryayuschie tozhdestvennym sootnosheniyam tipa Kapelli”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 143–166 | MR | Zbl

[12] Amitsur S. A., “A non-commutative Hilbert basis theorem and subrings of matrices”, Trans. Amer. Math. Soc., 149 (1970), 133–142 | DOI | MR | Zbl

[13] Irving R. S., “Affine PI-algebras not embeddable in matrix rings”, J. Algebra, 82 (1983), 94–101 | DOI | MR | Zbl

[14] Procesi C., “A formal inverse of the Caylay–Hamilton theorem”, J. Algebra, 107 (1987), 63–74 | DOI | MR | Zbl

[15] Procesi C., Rings with polynomial identities., Dekker, N. Y., 1973 | MR | Zbl

[16] Razmyslov Yu. P., Zubrilin K. A., “Capelli identities and representations of finite type”, Commun. Algebra, 22 (14) (1994), 5733–5744 | DOI | MR | Zbl

[17] Small L. W., “An example in $PI$-rings”, J. Algebra, 17 (1971), 434–436 | DOI | MR | Zbl