Complex periodic solutions of autonomous ODE systems with analytical right sides near an equilibrium point
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 393-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains the proof of a theorem on the relation of frequencies of the periodic complex solutions of a nonlinear ordinary differential equation system resolved with respect to derivatives and having analytical right parts with the frequencies of periodic solutions of the corresponding linearized system in the neighborhood of an equilibrium point.
@article{FPM_1995_1_2_a3,
     author = {V. F. Edneral},
     title = {Complex periodic solutions of autonomous {ODE} systems with analytical right sides near an equilibrium point},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {393--398},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a3/}
}
TY  - JOUR
AU  - V. F. Edneral
TI  - Complex periodic solutions of autonomous ODE systems with analytical right sides near an equilibrium point
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 393
EP  - 398
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a3/
LA  - ru
ID  - FPM_1995_1_2_a3
ER  - 
%0 Journal Article
%A V. F. Edneral
%T Complex periodic solutions of autonomous ODE systems with analytical right sides near an equilibrium point
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 393-398
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a3/
%G ru
%F FPM_1995_1_2_a3
V. F. Edneral. Complex periodic solutions of autonomous ODE systems with analytical right sides near an equilibrium point. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 393-398. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a3/

[1] A. D. Bruno (Brjuno), “Analytical form of differential equations. I”, Trans. Mosc. Math. Soc., 25 (1971), 131–288 | MR

[2] A. D. Bruno (Brjuno), “Analytical form of differential equations. II”, Trans. Mosc. Math. Soc., 26 (1972), 199–239 | Zbl

[3] A. D. Bruno, Local Method in Nonlinear Differential Equations, Part I: The Local Method of Nonlinear Analyses of Differential Equations, Part II: The Sets of Analyticity of a Normalizing Transformation, Springer Series in Soviet Mathematics, 1988, 370 pp., ISBN 3-540-18926-2 | MR