Complex periodic solutions of autonomous ODE systems with analytical right sides near an equilibrium point
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 393-398
The paper contains the proof of a theorem on the relation of frequencies of the periodic complex solutions of a nonlinear ordinary differential equation system resolved with respect to derivatives and having analytical right parts with the frequencies of periodic solutions of the corresponding linearized system in the neighborhood of an equilibrium point.
@article{FPM_1995_1_2_a3,
author = {V. F. Edneral},
title = {Complex periodic solutions of autonomous {ODE} systems with analytical right sides near an equilibrium point},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {393--398},
year = {1995},
volume = {1},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a3/}
}
TY - JOUR AU - V. F. Edneral TI - Complex periodic solutions of autonomous ODE systems with analytical right sides near an equilibrium point JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 393 EP - 398 VL - 1 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a3/ LA - ru ID - FPM_1995_1_2_a3 ER -
V. F. Edneral. Complex periodic solutions of autonomous ODE systems with analytical right sides near an equilibrium point. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 393-398. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a3/
[1] A. D. Bruno (Brjuno), “Analytical form of differential equations. I”, Trans. Mosc. Math. Soc., 25 (1971), 131–288 | MR
[2] A. D. Bruno (Brjuno), “Analytical form of differential equations. II”, Trans. Mosc. Math. Soc., 26 (1972), 199–239 | Zbl
[3] A. D. Bruno, Local Method in Nonlinear Differential Equations, Part I: The Local Method of Nonlinear Analyses of Differential Equations, Part II: The Sets of Analyticity of a Normalizing Transformation, Springer Series in Soviet Mathematics, 1988, 370 pp., ISBN 3-540-18926-2 | MR