Von Neumann regular skew-Laurent series rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 565-568
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\varphi$ be an automorphism of finite order. Then the skew-Laurent series ring $A((x,\varphi))$ is von Neumann regular iff $A$ is semisimple Artinian. The third equivalent condition is that $A((x,\varphi))$ is semisimple Artinian. The same result for strong regularity is proved in the case of an arbitrary automorphism $\varphi$.
@article{FPM_1995_1_2_a21,
author = {K. Sonin},
title = {Von {Neumann} regular {skew-Laurent} series rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {565--568},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a21/}
}
K. Sonin. Von Neumann regular skew-Laurent series rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 565-568. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a21/