Von Neumann regular skew-Laurent series rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 565-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varphi$ be an automorphism of finite order. Then the skew-Laurent series ring $A((x,\varphi))$ is von Neumann regular iff $A$ is semisimple Artinian. The third equivalent condition is that $A((x,\varphi))$ is semisimple Artinian. The same result for strong regularity is proved in the case of an arbitrary automorphism $\varphi$.
@article{FPM_1995_1_2_a21,
     author = {K. Sonin},
     title = {Von {Neumann} regular {skew-Laurent} series rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {565--568},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a21/}
}
TY  - JOUR
AU  - K. Sonin
TI  - Von Neumann regular skew-Laurent series rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 565
EP  - 568
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a21/
LA  - ru
ID  - FPM_1995_1_2_a21
ER  - 
%0 Journal Article
%A K. Sonin
%T Von Neumann regular skew-Laurent series rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 565-568
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a21/
%G ru
%F FPM_1995_1_2_a21
K. Sonin. Von Neumann regular skew-Laurent series rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 565-568. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a21/

[1] L. H. Rowen, Ring Theory, Academic Press, London, 1988 | MR

[2] K. R. Goodearl., Von Neumann Regular Rings, Pitman, London, 1979 | MR | Zbl

[3] K. I. Sonin., “Regulyarnye koltsa ryadov Lorana”, Fund. i prikl. mat., 1:1 (1995), 315–318 | MR