Polynomials of maximal period over primary residue rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 549-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

The maximality criterion for the period of a polynomial over primary residue ring is proved. This criterion generalize the results of the paper [1], where the case of polynomials over $\mathbb Z_{2^n}$ was considered, to the case of arbitrary primary ring $\mathbb Z_{p^n}$. The criterion is based on the concept of “marked polynomial” introduced in [1] and allows to verify the maximality of the period of a polynomial using only its coefficients. Some sufficient conditions of maximality of the period of a polynomial over $\mathbb Z_{p^n}$ are given.
@article{FPM_1995_1_2_a17,
     author = {A. S. Kuz'min},
     title = {Polynomials of maximal period over primary residue rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {549--551},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a17/}
}
TY  - JOUR
AU  - A. S. Kuz'min
TI  - Polynomials of maximal period over primary residue rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 549
EP  - 551
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a17/
LA  - ru
ID  - FPM_1995_1_2_a17
ER  - 
%0 Journal Article
%A A. S. Kuz'min
%T Polynomials of maximal period over primary residue rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 549-551
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a17/
%G ru
%F FPM_1995_1_2_a17
A. S. Kuz'min. Polynomials of maximal period over primary residue rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 549-551. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a17/

[1] Nechaev A. A., “Tsiklovye tipy lineinykh podstanovok nad konechnymi kommutativnymi koltsami”, Mat. sb., 184:3 (1993), 21–56 | MR | Zbl

[2] Ward M., “The arithmetical theory of linear recurring series”, Trans. Amer. Math. Soc., 35 (1933) | MR