Polynomials of maximal period over primary residue rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 549-551
Voir la notice de l'article provenant de la source Math-Net.Ru
The maximality criterion for the period of a polynomial over primary residue ring is proved. This criterion generalize the results of the paper [1], where the case of polynomials over $\mathbb Z_{2^n}$ was considered, to the case of arbitrary primary ring $\mathbb Z_{p^n}$. The criterion is based on the concept of “marked polynomial” introduced in [1] and allows to
verify the maximality of the period of a polynomial using only its coefficients. Some sufficient conditions of maximality of the period of a polynomial over $\mathbb Z_{p^n}$ are given.
@article{FPM_1995_1_2_a17,
author = {A. S. Kuz'min},
title = {Polynomials of maximal period over primary residue rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {549--551},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a17/}
}
A. S. Kuz'min. Polynomials of maximal period over primary residue rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 549-551. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a17/