On the structure of the symplectic group over polynomial rings with regular coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 545-548
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we prove the following result. Let $A$ be a ring of the geometric type or $A=C\bigl[[T_1,\ldots,T_{m}]\bigr]$, where $C$ is a regular ring and $\dim C\leq1$. Then the group $\operatorname{Sp}_{2r}\left(A[X_1,\ldots,X_{n}]\right)$ ($r\geq2$) is generated by elementary symplectic matrices.
@article{FPM_1995_1_2_a16,
author = {V. I. Kopeiko},
title = {On the structure of the symplectic group over polynomial rings with regular coefficients},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {545--548},
publisher = {mathdoc},
volume = {1},
number = {2},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a16/}
}
TY - JOUR AU - V. I. Kopeiko TI - On the structure of the symplectic group over polynomial rings with regular coefficients JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 545 EP - 548 VL - 1 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a16/ LA - ru ID - FPM_1995_1_2_a16 ER -
V. I. Kopeiko. On the structure of the symplectic group over polynomial rings with regular coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 545-548. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a16/