On the structure of the symplectic group over polynomial rings with regular coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 545-548

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we prove the following result. Let $A$ be a ring of the geometric type or $A=C\bigl[[T_1,\ldots,T_{m}]\bigr]$, where $C$ is a regular ring and $\dim C\leq1$. Then the group $\operatorname{Sp}_{2r}\left(A[X_1,\ldots,X_{n}]\right)$ ($r\geq2$) is generated by elementary symplectic matrices.
@article{FPM_1995_1_2_a16,
     author = {V. I. Kopeiko},
     title = {On the structure of the symplectic group over polynomial rings with regular coefficients},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {545--548},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a16/}
}
TY  - JOUR
AU  - V. I. Kopeiko
TI  - On the structure of the symplectic group over polynomial rings with regular coefficients
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 545
EP  - 548
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a16/
LA  - ru
ID  - FPM_1995_1_2_a16
ER  - 
%0 Journal Article
%A V. I. Kopeiko
%T On the structure of the symplectic group over polynomial rings with regular coefficients
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 545-548
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a16/
%G ru
%F FPM_1995_1_2_a16
V. I. Kopeiko. On the structure of the symplectic group over polynomial rings with regular coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 545-548. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a16/