On one system of equations in octaves in eight dimensional Euclidean space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 517-521
This paper deals with the boundary properties of functions with values in algebra of octaves and satisfying an equation system in $\mathbb R}^{8}$ similar to the Cauchy–Riemann system.
@article{FPM_1995_1_2_a10,
author = {V. E. Balabaev},
title = {On one system of equations in octaves in eight dimensional {Euclidean} space},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {517--521},
year = {1995},
volume = {1},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a10/}
}
V. E. Balabaev. On one system of equations in octaves in eight dimensional Euclidean space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 2, pp. 517-521. http://geodesic.mathdoc.fr/item/FPM_1995_1_2_a10/
[1] Vinogradov V. S., “Issledovanie granichnykh zadach dlya ellipticheskikh sistem pervogo poryadka”, Avtoreferat dis. ... dokt. fiz.-mat. nauk, Matem. zam., 14:2 (1973), 291–304 | Zbl
[2] Balabaev V. E., “Kvaternionnyi analog sistemy Koshi–Rimana v chetyrekhmernom kompleksnom prostranstve i nekotorye ego prilozheniya”, DAN SSSR, 214:3 (1974), 489–491 | MR | Zbl
[3] Chzhen Shen-Shen, Kompleksnye mnogoobraziya, IL, M., 1961