Property of the spatial projectivity in the class of CSL-algebras with atomic commutant
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 147-159
Voir la notice de l'article provenant de la source Math-Net.Ru
This work continues to study spatial homological properties of, generally speaking, non-selfadjoint, reflexive operator algebras in a Hilbert space $H$. A “lattice” criterion of spatial projectivity of an algebra $A$ (i.e. the projectivity of $H$ as left Banach $A$-module) is obtained in the class of indecomposable CSL-algebras: the existence of immediate predesessor of $H$ as element of the lattice of invariant subspaces. Also, the direct product of indecomposable CSL-algebras $A_\alpha$, $\alpha\in\Lambda$, is a spatial projective algebra iff the algebra $A_\alpha$ is spatial projective for every $\alpha$.
@article{FPM_1995_1_1_a6,
author = {Yu. O. Golovin},
title = {Property of the spatial projectivity in the class of {CSL-algebras} with atomic commutant},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {147--159},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/}
}
TY - JOUR AU - Yu. O. Golovin TI - Property of the spatial projectivity in the class of CSL-algebras with atomic commutant JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 147 EP - 159 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/ LA - ru ID - FPM_1995_1_1_a6 ER -
Yu. O. Golovin. Property of the spatial projectivity in the class of CSL-algebras with atomic commutant. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 147-159. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/