Property of the spatial projectivity in the class of CSL-algebras with atomic commutant
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 147-159

Voir la notice de l'article provenant de la source Math-Net.Ru

This work continues to study spatial homological properties of, generally speaking, non-selfadjoint, reflexive operator algebras in a Hilbert space $H$. A “lattice” criterion of spatial projectivity of an algebra $A$ (i.e. the projectivity of $H$ as left Banach $A$-module) is obtained in the class of indecomposable CSL-algebras: the existence of immediate predesessor of $H$ as element of the lattice of invariant subspaces. Also, the direct product of indecomposable CSL-algebras $A_\alpha$, $\alpha\in\Lambda$, is a spatial projective algebra iff the algebra $A_\alpha$ is spatial projective for every $\alpha$.
@article{FPM_1995_1_1_a6,
     author = {Yu. O. Golovin},
     title = {Property of the spatial projectivity in the class of {CSL-algebras} with atomic commutant},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {147--159},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/}
}
TY  - JOUR
AU  - Yu. O. Golovin
TI  - Property of the spatial projectivity in the class of CSL-algebras with atomic commutant
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 147
EP  - 159
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/
LA  - ru
ID  - FPM_1995_1_1_a6
ER  - 
%0 Journal Article
%A Yu. O. Golovin
%T Property of the spatial projectivity in the class of CSL-algebras with atomic commutant
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 147-159
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/
%G ru
%F FPM_1995_1_1_a6
Yu. O. Golovin. Property of the spatial projectivity in the class of CSL-algebras with atomic commutant. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 147-159. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/