Property of the spatial projectivity in the class of CSL-algebras with atomic commutant
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 147-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work continues to study spatial homological properties of, generally speaking, non-selfadjoint, reflexive operator algebras in a Hilbert space $H$. A “lattice” criterion of spatial projectivity of an algebra $A$ (i.e. the projectivity of $H$ as left Banach $A$-module) is obtained in the class of indecomposable CSL-algebras: the existence of immediate predesessor of $H$ as element of the lattice of invariant subspaces. Also, the direct product of indecomposable CSL-algebras $A_\alpha$, $\alpha\in\Lambda$, is a spatial projective algebra iff the algebra $A_\alpha$ is spatial projective for every $\alpha$.
@article{FPM_1995_1_1_a6,
     author = {Yu. O. Golovin},
     title = {Property of the spatial projectivity in the class of {CSL-algebras} with atomic commutant},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {147--159},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/}
}
TY  - JOUR
AU  - Yu. O. Golovin
TI  - Property of the spatial projectivity in the class of CSL-algebras with atomic commutant
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 147
EP  - 159
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/
LA  - ru
ID  - FPM_1995_1_1_a6
ER  - 
%0 Journal Article
%A Yu. O. Golovin
%T Property of the spatial projectivity in the class of CSL-algebras with atomic commutant
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 147-159
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/
%G ru
%F FPM_1995_1_1_a6
Yu. O. Golovin. Property of the spatial projectivity in the class of CSL-algebras with atomic commutant. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 147-159. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a6/

[1] G. Birkgof, Teoriya reshetok, Nauka, M., 1984 | MR

[2] P. R. Halmos, Reflexive lattices of subspaces, 2:4 (1971), 257–263 | MR | Zbl

[3] W. E. Arveson, “Operator algebras and invariant subspaces”, Ann. Math., 100 (1974), 433–532 | DOI | MR | Zbl

[4] K. R. Davidson, “Commutative subspace lattices”, Indiana Univ. Math. J., 27 (1978), 479–490 | DOI | MR | Zbl

[5] F. Gilfeather, A. Hopenwasser, D. R. Larson, “Reflexive algebras with finite width lattices”, J. Funct. Anal., tensor products, cohomology, compact perturbations, 55, 1984, 176–199 | DOI | MR | Zbl

[6] J. R. Ringrose, “On some algebras of operators”, Pros. London Math. Soc., 3:15 (1965), 61–83 | DOI | MR | Zbl

[7] W. E. Longstaff, “Strongly reflexive lattices”, J. London Math. Soc., 2:11 (1975), 491–498 | DOI | MR

[8] A. Hopenwasser, R. Moore, “Finite rank operators in reflexive operator algebras”, J. London Math. Soc., 2:27 (1983), 331–338 | DOI | MR | Zbl

[9] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR

[10] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry, Nauka, M., 1989 | MR

[11] Yu. O. Golovin, “Kriterii prostranstvennoi proektivnosti nerazlozhimoi CSL-algebry operatorov”, UMN, 49:4 (1994), 161–162 | MR | Zbl

[12] Yu. O. Golovin, “Gomologicheskie svoistva gilbertovykh modulei nad gnezdovymi operatornymi algebrami”, Matem. zametki, 41 (1987), 769–775 | MR | Zbl

[13] Yu. O. Golovin, Prostranstvennaya ploskost i in'ektivnost nerazlozhimoi CSL-algebry konechnoi shiriny, Preprint

[14] A. Ya. Helemskii, “A description of spatially projective von Neumann algebras”, J. Oper. Theory, 32:2 (1994), 381–398 | MR | Zbl

[15] A. Ya. Helemskii, “The spatial flatness and injectivity of Connes operator algebras”, Extracta Mathematicae, 9:1 (1994), 75–81 | MR | Zbl

[16] Sh. I. Kaliman, Yu. V. Selivanov, “O kogomologiyakh operatornykh algebr”, Vestnik MGU. Matem., mekhan., 1981, no. 2, 55–58

[17] B. L. Osofsky, Regional Conference Series in Mathematics, 12, Providence, 1973 | MR | Zbl

[18] Yu. V. Selivanov, Biproektivnye banakhovy algebry, 43 (1979), 1159–1174 | MR | Zbl

[19] A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc., no. 16, 1955 | MR

[20] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[21] E. Christensen, “Derivations of nest algebras”, Math. Ann., 229 (1977), 155–161 | DOI | MR | Zbl

[22] F. Gilfeather, D. R. Larson, “Commutants modulo the compact operators of certain CSL-algebras”, Topics in modern operator theory, Basel, 1981, 105–120 | MR | Zbl

[23] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR