Some instantly solvable in average search problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 123-146
The concept of instantly solvable in average search problem is introduced as that of a problem, which can be solved in the average time equal to the time of answer enumeration plus some constant which is independent of the problem dimension. Examples of instantly solvable in average search problems are given.
@article{FPM_1995_1_1_a5,
author = {\`E. \`E. Gasanov},
title = {Some instantly solvable in average search problems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {123--146},
year = {1995},
volume = {1},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a5/}
}
È. È. Gasanov. Some instantly solvable in average search problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 123-146. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a5/
[1] Gasanov E. E., “Ob odnoi matematicheskoi modeli informatsionnogo poiska”, Diskretnaya matematika, 3:2 (1991), 69–76 | MR | Zbl
[2] Gasanov E. E., “Optimalnye informatsionnye seti dlya otnoshenii poiska, yavlyayuschikhsya otnosheniyami lineinogo kvaziporyadka”, Konstruktsii v algebre i logike, Izd-vo Tverskogo gosuniversiteta, Tver, 1990, 11–17 | MR
[3] Gasanov E. E., Erokhin A. N., “O bystrom v srednem reshenii $n$-mernoi zadachi intervalnogo poiska”, Metody i sistemy tekhnicheskoi diagnostiki, Tezisy X mezhdunarodnoi konferentsii po problemam teoreticheskoi kibernetiki, Saratovskogo gosuniversiteta, Saratov, 1993, 48–49