Regular rings of Laurent series
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 315-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following conditions for the ring $A((x))$ of Laurent series over a ring $A$ are equivalent: 1) $A((x))$ is a regular ring; 2) $A((x))$ is a semisimple Artinian ring; 3) $A$ is a semisimple Artinian ring.
@article{FPM_1995_1_1_a20,
     author = {K. Sonin},
     title = {Regular rings of {Laurent} series},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {315--317},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a20/}
}
TY  - JOUR
AU  - K. Sonin
TI  - Regular rings of Laurent series
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 315
EP  - 317
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a20/
LA  - ru
ID  - FPM_1995_1_1_a20
ER  - 
%0 Journal Article
%A K. Sonin
%T Regular rings of Laurent series
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 315-317
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a20/
%G ru
%F FPM_1995_1_1_a20
K. Sonin. Regular rings of Laurent series. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 315-317. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a20/

[1] Feis K., Algebra, koltsa, moduli i kategorii, 2, Mir, M., 1979 | MR

[2] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl