Isomorphisms of projective groups over associative rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 311-314
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a two-sided order in a regular ring $Q$, $1\in R$, $n\geq3$, $H$ a subgroup of the linear group $GL_n(R)$ containing the elementary subgroup $E_n(R)$, $\psi$ an automorphism of the projective group $PH$ which is identical on $PE_n(R)$. Then $\psi$ is identical on the group $PH$.
@article{FPM_1995_1_1_a19,
author = {I. Z. Golubchik},
title = {Isomorphisms of projective groups over associative rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {311--314},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a19/}
}
I. Z. Golubchik. Isomorphisms of projective groups over associative rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 311-314. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a19/