Lower bounds of polynomials on values of algebraically dependent E-functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 305-310

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a lower bound of the modulus of a polynomial $\left|P\left(f_{1}(\alpha),\ldots,\,f_{s}(\alpha)\right)\right|$ with integer coefficients on the values of E-functions $f_{1}(z),\ldots,f_{s}(z)$ at an algebraic point $\alpha$ is obtained, provided $P\left(f_{1}(\alpha),\ldots,\,f_{s}(\alpha)\right)\neq0$.
@article{FPM_1995_1_1_a18,
     author = {A. I. Galochkin},
     title = {Lower bounds of polynomials on values of algebraically dependent {E-functions}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {305--310},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a18/}
}
TY  - JOUR
AU  - A. I. Galochkin
TI  - Lower bounds of polynomials on values of algebraically dependent E-functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 305
EP  - 310
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a18/
LA  - ru
ID  - FPM_1995_1_1_a18
ER  - 
%0 Journal Article
%A A. I. Galochkin
%T Lower bounds of polynomials on values of algebraically dependent E-functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 305-310
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a18/
%G ru
%F FPM_1995_1_1_a18
A. I. Galochkin. Lower bounds of polynomials on values of algebraically dependent E-functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 305-310. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a18/