Lower bounds of polynomials on values of algebraically dependent E-functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 305-310
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper a lower bound of the modulus of a polynomial $\left|P\left(f_{1}(\alpha),\ldots,\,f_{s}(\alpha)\right)\right|$ with integer coefficients on the values of E-functions $f_{1}(z),\ldots,f_{s}(z)$ at an algebraic point $\alpha$ is obtained, provided $P\left(f_{1}(\alpha),\ldots,\,f_{s}(\alpha)\right)\neq0$.
@article{FPM_1995_1_1_a18,
author = {A. I. Galochkin},
title = {Lower bounds of polynomials on values of algebraically dependent {E-functions}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {305--310},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a18/}
}
TY - JOUR AU - A. I. Galochkin TI - Lower bounds of polynomials on values of algebraically dependent E-functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 305 EP - 310 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a18/ LA - ru ID - FPM_1995_1_1_a18 ER -
A. I. Galochkin. Lower bounds of polynomials on values of algebraically dependent E-functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 305-310. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a18/