Ring properties of endomorphism rings of modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 301-304
Voir la notice de l'article provenant de la source Math-Net.Ru
A certain method of studying ring properties of endomorphism rings of modules is justified. As an example of its applications the equivalence of the following conditions is proved: 1) the right annihilator of every proper finitely generated (principal) left ideal in any endomorphism ring of an injective right $R$-module contains a nonzero idempotent; 2) the ring $R$ is a semiartinian right $V$-ring.
@article{FPM_1995_1_1_a17,
author = {G. M. Brodskii and A. G. Grigoryan},
title = {Ring properties of endomorphism rings of modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {301--304},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a17/}
}
G. M. Brodskii; A. G. Grigoryan. Ring properties of endomorphism rings of modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 301-304. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a17/