Ring properties of endomorphism rings of modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 301-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

A certain method of studying ring properties of endomorphism rings of modules is justified. As an example of its applications the equivalence of the following conditions is proved: 1) the right annihilator of every proper finitely generated (principal) left ideal in any endomorphism ring of an injective right $R$-module contains a nonzero idempotent; 2) the ring $R$ is a semiartinian right $V$-ring.
@article{FPM_1995_1_1_a17,
     author = {G. M. Brodskii and A. G. Grigoryan},
     title = {Ring properties of endomorphism rings of modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {301--304},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a17/}
}
TY  - JOUR
AU  - G. M. Brodskii
AU  - A. G. Grigoryan
TI  - Ring properties of endomorphism rings of modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 301
EP  - 304
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a17/
LA  - ru
ID  - FPM_1995_1_1_a17
ER  - 
%0 Journal Article
%A G. M. Brodskii
%A A. G. Grigoryan
%T Ring properties of endomorphism rings of modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 301-304
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a17/
%G ru
%F FPM_1995_1_1_a17
G. M. Brodskii; A. G. Grigoryan. Ring properties of endomorphism rings of modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 301-304. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a17/

[1] Feis K., Algebra, koltsa, moduli i kategorii, 1, Mir, M., 1977

[2] Dung N. V., Smith P. E., J. Pure and Appl. Algebra, 82 (1992), 27–37 | DOI | MR | Zbl