T-ideal of generalized identities for a class of primitive algebras with involution
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 255-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

The T-ideal of generalized polynomial identities of any primitive algebra $R$ with involution is found, provided $R$ is an algebra over an algebraically closed field $F$ of characteristic different from 2, the ring $R$ contains no primitive symmetric idempotents, and there exists an idempotent $e$ such that $eRe=eF$.
@article{FPM_1995_1_1_a13,
     author = {A. E. Pentus},
     title = {T-ideal of generalized identities for a class of primitive algebras with involution},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {255--262},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a13/}
}
TY  - JOUR
AU  - A. E. Pentus
TI  - T-ideal of generalized identities for a class of primitive algebras with involution
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 255
EP  - 262
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a13/
LA  - ru
ID  - FPM_1995_1_1_a13
ER  - 
%0 Journal Article
%A A. E. Pentus
%T T-ideal of generalized identities for a class of primitive algebras with involution
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 255-262
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a13/
%G ru
%F FPM_1995_1_1_a13
A. E. Pentus. T-ideal of generalized identities for a class of primitive algebras with involution. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 255-262. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a13/

[1] Beidar K. I., 14-ya Vsesoyuznaya algebraicheskaya konferentsiya, Tezisy soobschenii, Novosibirsk, 1977

[2] Leng S., Algebra, Mir, M., 1965

[3] Pentus A. E., “Ideal obobschennykh tozhdestv koltsa $(n\times n)$-matrits nad konechnym polem s involyutsiei”, Uspekhi matem. nauk, 47:2 (1992), 187–188 | MR | Zbl

[4] Pentus A. E., “Stroenie T-ideala obobschennykh tozhdestv primitivnykh algebr s involyutsiei nad polem”, Uspekhi matem. nauk, 47:6 (1992), 227–228 | MR | Zbl

[5] Beidar K. I., Mikhalev A. V., Salavova C., “Generalized Identities and Semiprime Rings with Involution”, Mathematische Zeitschrift, 178:37–62 (1981) | MR | Zbl

[6] Chuang Chen-Lian, “*-Differential Identities of Prime Rings with Involution”, Trans. Amer. Math. Soc., 316:1 (1989), 251–279 | DOI | MR | Zbl

[7] Littlewood D. E., “Identical relations satisfied in an algebra”, Proc. London Math. Soc., 32, no. 2, 1931, 312–320 | Zbl

[8] Rosen J. D., “$*$-Generalized polynomial identities of finite-dimensional central simple algebras”, Israel J. Math., 46:1–2 (1983), 97–101 | DOI | MR

[9] Rowen L. H., Ring Theory, V. 1, Academic Press, New York, 1988 | MR