Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_1995_1_1_a12, author = {A. A. Nechaev}, title = {Finite {quasi-Frobenius} modules, applications to codes and linear recurrences}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {229--254}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a12/} }
TY - JOUR AU - A. A. Nechaev TI - Finite quasi-Frobenius modules, applications to codes and linear recurrences JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 229 EP - 254 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a12/ LA - ru ID - FPM_1995_1_1_a12 ER -
A. A. Nechaev. Finite quasi-Frobenius modules, applications to codes and linear recurrences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 229-254. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a12/
[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972, 160 pp. | MR
[2] Ericson Th., Zinoviev W., Spherical codes, Manuscript
[3] Kuzmin A. S. Nechaev A. A., “Lineino predstavimye kody i kod Kerdoka nad proizvolnym polem Galua kharakteristiki 2”, Uspekhi mat. nauk, 49:5 (1994), 165–166 | MR
[4] Lambek I., Koltsa i moduli, Mir, M., 1971, 279 | MR | Zbl
[5] Mak-Vilyams F. D., Sloen N. D. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979
[6] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskret. mat., 3:4 (1991), 105–127 | MR
[7] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kvazifrobeniusovymi modulyami”, Uspekhi mat. nauk., 48:3 (1993), 197–198 | MR | Zbl
[8] Feis K., Algebra, koltsa, moduli, kategorii, 2, M., Mir, 1979 | MR
[9] Azumaya G., “A duality theory for injective modules (Theory of quasi-Frobenius modules)”, Amer. J. Math., 81:1 (1959), 249–278 | DOI | MR | Zbl
[10] Kuzmin A. S., Kurakin V. L., Mikhalev A. V., Nechaev A A., “Linear recurrences over rings and modules”, Contemporary Math. and it's Appl. Thematic survays, J. of Math. Science, 10 (1994) | MR | Zbl
[11] Kuzmin A. S., Nechaev A. A., “Error correcting codes on the base of linear recurring sequences over Galois rings”, IV-th Int. Workshop. Algebraic and Combinatorial Coding Theory, Proceedings (Novgorod), 1994, 132–135
[12] Morita K., “Duality for modules and its applications to the theory of rings with minimum condition”, Sci. Repts Tokyo Kyoiku Daigaku (A6, No 15, May), 1958, 83–142 | MR | Zbl
[13] Nechaev A. A., “Linear codes over finite rings and $QF$-modules”, IV-th Int. Workshop. Algebraic and Combinatorial Coding Theory, Proceedings (Novgorod), 1994, 154–157
[14] Wisbauer R., “Grundlagen der Modul-und Ringtheorie”, Munchen Verl. Reinhard Fischer (1988 VI), 596 | MR | Zbl
[15] Hammous A. R., Kumar P. V., Calderbrank A. R., Sloane N. J. A., Sole P., “The $nqz{Z}_4$ linearity of Kerdock”, Goethals and related codes, Preparata, 1993