Finite quasi-Frobenius modules, applications to codes and linear recurrences
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 229-254
Voir la notice de l'article provenant de la source Math-Net.Ru
A simple exposition of the main properties of the quasi-Frobenius modules over finite commutative rings with identity elements. The presented results show the special role of such modules in the theory of linear recurrences and in the theory of linear codes over rings and modules. In particular it is proved that the general weight functions of the linear code over a ring and the dual code over the corresponding $QF$-module are connected by the Mac-Williams identity.
@article{FPM_1995_1_1_a12,
author = {A. A. Nechaev},
title = {Finite {quasi-Frobenius} modules, applications to codes and linear recurrences},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {229--254},
publisher = {mathdoc},
volume = {1},
number = {1},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a12/}
}
TY - JOUR AU - A. A. Nechaev TI - Finite quasi-Frobenius modules, applications to codes and linear recurrences JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 229 EP - 254 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a12/ LA - ru ID - FPM_1995_1_1_a12 ER -
A. A. Nechaev. Finite quasi-Frobenius modules, applications to codes and linear recurrences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 1, pp. 229-254. http://geodesic.mathdoc.fr/item/FPM_1995_1_1_a12/