The least prime which does not split completely.
Forum mathematicum, Tome 6 (1994) no. 3, pp. 555-566.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : splitting, generalized Riemann hypothesis, Dedekind zeta functions, prime ideals, elliptic curve without complex multiplication, point of prime order
@article{FORUM_1994__6_3_141752,
     author = {V. Kumar Murty},
     title = {The least prime which does not split completely.},
     journal = {Forum mathematicum},
     pages = {555--566},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1994},
     zbl = {0834.11045},
     url = {http://geodesic.mathdoc.fr/item/FORUM_1994__6_3_141752/}
}
TY  - JOUR
AU  - V. Kumar Murty
TI  - The least prime which does not split completely.
JO  - Forum mathematicum
PY  - 1994
SP  - 555
EP  - 566
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FORUM_1994__6_3_141752/
ID  - FORUM_1994__6_3_141752
ER  - 
%0 Journal Article
%A V. Kumar Murty
%T The least prime which does not split completely.
%J Forum mathematicum
%D 1994
%P 555-566
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FORUM_1994__6_3_141752/
%F FORUM_1994__6_3_141752
V. Kumar Murty. The least prime which does not split completely.. Forum mathematicum, Tome 6 (1994) no. 3, pp. 555-566. http://geodesic.mathdoc.fr/item/FORUM_1994__6_3_141752/