How does a reflected one-dimensional diffusion bounce back?
Forum mathematicum, Tome 4 (1992) no. 6, pp. 549-566.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : local time, diffusion processes, additive functional
@article{FORUM_1992__4_6_141691,
     author = {Jean Bertoin},
     title = {How does a reflected one-dimensional diffusion bounce back?},
     journal = {Forum mathematicum},
     pages = {549--566},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1992},
     zbl = {0764.60079},
     url = {http://geodesic.mathdoc.fr/item/FORUM_1992__4_6_141691/}
}
TY  - JOUR
AU  - Jean Bertoin
TI  - How does a reflected one-dimensional diffusion bounce back?
JO  - Forum mathematicum
PY  - 1992
SP  - 549
EP  - 566
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FORUM_1992__4_6_141691/
ID  - FORUM_1992__4_6_141691
ER  - 
%0 Journal Article
%A Jean Bertoin
%T How does a reflected one-dimensional diffusion bounce back?
%J Forum mathematicum
%D 1992
%P 549-566
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FORUM_1992__4_6_141691/
%F FORUM_1992__4_6_141691
Jean Bertoin. How does a reflected one-dimensional diffusion bounce back?. Forum mathematicum, Tome 4 (1992) no. 6, pp. 549-566. http://geodesic.mathdoc.fr/item/FORUM_1992__4_6_141691/