Global Dimension of Differential Operator Rings. IV - Simple Modules.
Forum mathematicum, Tome 1 (1989) no. 3, pp. 185-200.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : differential operator rings, projective dimensions, noetherian coefficient ring, derivations, simple modules, global dimension, differential dimension, maximal ideals, noetherian local ring, Gorenstein ring
@article{FORUM_1989__1_3_141611,
     author = {Kenneth R. Goodearl},
     title = {Global {Dimension} of {Differential} {Operator} {Rings.} {IV} - {Simple} {Modules.}},
     journal = {Forum mathematicum},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1989},
     zbl = {0656.16001},
     url = {http://geodesic.mathdoc.fr/item/FORUM_1989__1_3_141611/}
}
TY  - JOUR
AU  - Kenneth R. Goodearl
TI  - Global Dimension of Differential Operator Rings. IV - Simple Modules.
JO  - Forum mathematicum
PY  - 1989
SP  - 185
EP  - 200
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FORUM_1989__1_3_141611/
ID  - FORUM_1989__1_3_141611
ER  - 
%0 Journal Article
%A Kenneth R. Goodearl
%T Global Dimension of Differential Operator Rings. IV - Simple Modules.
%J Forum mathematicum
%D 1989
%P 185-200
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FORUM_1989__1_3_141611/
%F FORUM_1989__1_3_141611
Kenneth R. Goodearl. Global Dimension of Differential Operator Rings. IV - Simple Modules.. Forum mathematicum, Tome 1 (1989) no. 3, pp. 185-200. http://geodesic.mathdoc.fr/item/FORUM_1989__1_3_141611/