Inverse Problem for Fractional Diffusion Equation
Fractional calculus and applied analysis, Tome 14 (2011) no. 1, pp. 31-55.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We prove that by taking suitable initial distributions only finitely many measurements on the boundary are required to recover uniquely the diffusion coefficient of a one dimensional fractional diffusion equation. If a lower bound on the diffusion coefficient is known a priori then even only two measurements are sufficient. The technique is based on possibility of extracting the full boundary spectral data from special lateral measurements.
Keywords: Fractional Diffusion Equation, Inverse Problem, Boundary Spectral Data, Eigenfunction Expansion
@article{FCAA_2011_14_1_a2,
     author = {Tuan, Vu Kim},
     title = {Inverse {Problem} for {Fractional} {Diffusion} {Equation}},
     journal = {Fractional calculus and applied analysis},
     pages = {31--55},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a2/}
}
TY  - JOUR
AU  - Tuan, Vu Kim
TI  - Inverse Problem for Fractional Diffusion Equation
JO  - Fractional calculus and applied analysis
PY  - 2011
SP  - 31
EP  - 55
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a2/
LA  - en
ID  - FCAA_2011_14_1_a2
ER  - 
%0 Journal Article
%A Tuan, Vu Kim
%T Inverse Problem for Fractional Diffusion Equation
%J Fractional calculus and applied analysis
%D 2011
%P 31-55
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a2/
%G en
%F FCAA_2011_14_1_a2
Tuan, Vu Kim. Inverse Problem for Fractional Diffusion Equation. Fractional calculus and applied analysis, Tome 14 (2011) no. 1, pp. 31-55. http://geodesic.mathdoc.fr/item/FCAA_2011_14_1_a2/