On a Convexity Preserving Integral Operator
Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 531-536.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we determine conditions an analytic function g needs to satisfy in order that the function Fgiven by (1) be convex.
Keywords: Analytic Function, Integral Operator, Convex Function, Close-to-Convex Function
@article{FCAA_2010_13_5_a7,
     author = {Oros, Gheorghe and Irina Oros, Georgia},
     title = {On a {Convexity} {Preserving} {Integral} {Operator}},
     journal = {Fractional calculus and applied analysis},
     pages = {531--536},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a7/}
}
TY  - JOUR
AU  - Oros, Gheorghe
AU  - Irina Oros, Georgia
TI  - On a Convexity Preserving Integral Operator
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 531
EP  - 536
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a7/
LA  - en
ID  - FCAA_2010_13_5_a7
ER  - 
%0 Journal Article
%A Oros, Gheorghe
%A Irina Oros, Georgia
%T On a Convexity Preserving Integral Operator
%J Fractional calculus and applied analysis
%D 2010
%P 531-536
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a7/
%G en
%F FCAA_2010_13_5_a7
Oros, Gheorghe; Irina Oros, Georgia. On a Convexity Preserving Integral Operator. Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 531-536. http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a7/