Hilbert-Smith Conjecture for K - Quasiconformal Groups
Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 507-516.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

A more general version of Hilbert's fifth problem, called the Hilbert-Smith conjecture, asserts that among all locally compact topological groups only Lie groups can act effectively on finite-dimensional manifolds. We give a solution of the Hilbert-Smith Conjecture for K - quasiconformal groups acting on domains in the extended n - dimensional Euclidean space.
Keywords: Quasiconformal Group, Lie Group, Locally Compact Group, Hilbert-Smith Conjecture
@article{FCAA_2010_13_5_a4,
     author = {Gong, Jianhua},
     title = {Hilbert-Smith {Conjecture} for {K} - {Quasiconformal} {Groups}},
     journal = {Fractional calculus and applied analysis},
     pages = {507--516},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a4/}
}
TY  - JOUR
AU  - Gong, Jianhua
TI  - Hilbert-Smith Conjecture for K - Quasiconformal Groups
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 507
EP  - 516
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a4/
LA  - en
ID  - FCAA_2010_13_5_a4
ER  - 
%0 Journal Article
%A Gong, Jianhua
%T Hilbert-Smith Conjecture for K - Quasiconformal Groups
%J Fractional calculus and applied analysis
%D 2010
%P 507-516
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a4/
%G en
%F FCAA_2010_13_5_a4
Gong, Jianhua. Hilbert-Smith Conjecture for K - Quasiconformal Groups. Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 507-516. http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a4/