Hilbert-Smith Conjecture for K - Quasiconformal Groups
Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 507-516
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
A more general version of Hilbert's fifth problem, called the Hilbert-Smith conjecture, asserts that among all locally compact topological groups only Lie groups can act effectively on finite-dimensional manifolds. We give a solution of the Hilbert-Smith Conjecture for K - quasiconformal groups acting on domains in the extended n - dimensional Euclidean space.
Keywords:
Quasiconformal Group, Lie Group, Locally Compact Group, Hilbert-Smith Conjecture
@article{FCAA_2010_13_5_a4,
author = {Gong, Jianhua},
title = {Hilbert-Smith {Conjecture} for {K} - {Quasiconformal} {Groups}},
journal = {Fractional calculus and applied analysis},
pages = {507--516},
year = {2010},
volume = {13},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a4/}
}
Gong, Jianhua. Hilbert-Smith Conjecture for K - Quasiconformal Groups. Fractional calculus and applied analysis, Tome 13 (2010) no. 5, pp. 507-516. http://geodesic.mathdoc.fr/item/FCAA_2010_13_5_a4/