Explicit Solutions of Nonlocal Boundary Value Problems, Containing Bitsadze-Samarskii Constraints
Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 435-446
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper are found explicit solutions of four nonlocal boundary value
problems for Laplace, heat and wave equations, with Bitsadze-Samarskii
constraints based on non-classical one-dimensional convolutions. In fact,
each explicit solution may be considered as a way for effective summation
of a solution in the form of nonharmonic Fourier sine-expansion. Each
explicit solution, may be used for numerical calculation of the solutions too.
Keywords:
Nonlocal BVP, Extended Duhamel Principle, Associated Eigenfunctions, Weak Solution, Convolution
@article{FCAA_2010_13_4_a8,
author = {Tsankov, Yulian},
title = {Explicit {Solutions} of {Nonlocal} {Boundary} {Value} {Problems,} {Containing} {Bitsadze-Samarskii} {Constraints}},
journal = {Fractional calculus and applied analysis},
pages = {435--446},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a8/}
}
TY - JOUR AU - Tsankov, Yulian TI - Explicit Solutions of Nonlocal Boundary Value Problems, Containing Bitsadze-Samarskii Constraints JO - Fractional calculus and applied analysis PY - 2010 SP - 435 EP - 446 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a8/ LA - en ID - FCAA_2010_13_4_a8 ER -
%0 Journal Article %A Tsankov, Yulian %T Explicit Solutions of Nonlocal Boundary Value Problems, Containing Bitsadze-Samarskii Constraints %J Fractional calculus and applied analysis %D 2010 %P 435-446 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a8/ %G en %F FCAA_2010_13_4_a8
Tsankov, Yulian. Explicit Solutions of Nonlocal Boundary Value Problems, Containing Bitsadze-Samarskii Constraints. Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 435-446. http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a8/