Explicit Solutions of Nonlocal Boundary Value Problems, Containing Bitsadze-Samarskii Constraints
Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 435-446.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper are found explicit solutions of four nonlocal boundary value problems for Laplace, heat and wave equations, with Bitsadze-Samarskii constraints based on non-classical one-dimensional convolutions. In fact, each explicit solution may be considered as a way for effective summation of a solution in the form of nonharmonic Fourier sine-expansion. Each explicit solution, may be used for numerical calculation of the solutions too.
Keywords: Nonlocal BVP, Extended Duhamel Principle, Associated Eigenfunctions, Weak Solution, Convolution
@article{FCAA_2010_13_4_a8,
     author = {Tsankov, Yulian},
     title = {Explicit {Solutions} of {Nonlocal} {Boundary} {Value} {Problems,} {Containing} {Bitsadze-Samarskii} {Constraints}},
     journal = {Fractional calculus and applied analysis},
     pages = {435--446},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a8/}
}
TY  - JOUR
AU  - Tsankov, Yulian
TI  - Explicit Solutions of Nonlocal Boundary Value Problems, Containing Bitsadze-Samarskii Constraints
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 435
EP  - 446
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a8/
LA  - en
ID  - FCAA_2010_13_4_a8
ER  - 
%0 Journal Article
%A Tsankov, Yulian
%T Explicit Solutions of Nonlocal Boundary Value Problems, Containing Bitsadze-Samarskii Constraints
%J Fractional calculus and applied analysis
%D 2010
%P 435-446
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a8/
%G en
%F FCAA_2010_13_4_a8
Tsankov, Yulian. Explicit Solutions of Nonlocal Boundary Value Problems, Containing Bitsadze-Samarskii Constraints. Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 435-446. http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a8/