Series in Mittag-Leffler Functions: Inequalities and Convergent Theorems
Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 403-414.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In studying the behaviour of series, defined by means of the Mittag-Leffler functions, on the boundary of its domain of convergence in the complex plane, we prove Cauchy-Hadamard, Abel, Tauber and Littlewood type theorems. Asymptotic formulae are also provided for the Mittag-Leffler functions in the case of large" values of indices that are used in the proofs of the convergence theorems for the considered series.
Keywords: Mittag-Leffler Functions, Inequalities, Asymptotic Formula, Cauchy-Hadamard, Summation of Divergent Series, Abel, Tauber and Littlewood Type Theorems
@article{FCAA_2010_13_4_a5,
     author = {Paneva-Konovska, Jordanka},
     title = {Series in {Mittag-Leffler} {Functions:} {Inequalities} and {Convergent} {Theorems}},
     journal = {Fractional calculus and applied analysis},
     pages = {403--414},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a5/}
}
TY  - JOUR
AU  - Paneva-Konovska, Jordanka
TI  - Series in Mittag-Leffler Functions: Inequalities and Convergent Theorems
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 403
EP  - 414
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a5/
LA  - en
ID  - FCAA_2010_13_4_a5
ER  - 
%0 Journal Article
%A Paneva-Konovska, Jordanka
%T Series in Mittag-Leffler Functions: Inequalities and Convergent Theorems
%J Fractional calculus and applied analysis
%D 2010
%P 403-414
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a5/
%G en
%F FCAA_2010_13_4_a5
Paneva-Konovska, Jordanka. Series in Mittag-Leffler Functions: Inequalities and Convergent Theorems. Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 403-414. http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a5/