An Application of Convolution Integral
Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 395-402
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
Applying the Bernardi integral operator, an interesting convolution integral is introduced. The object of the present paper is to derive some
convolution integral properties of functions f(z) to be in the subclasses of the classes S*(α) and Κ(α) by making use of their coefficient inequalities.
Keywords:
Analytic Function, Starlike Function, Convex Function, Convolution, Hölder Inequality, Bernardi Integral Operator
@article{FCAA_2010_13_4_a4,
author = {Nishiwaki, Junichi and Owa, Shigeyoshi},
title = {An {Application} of {Convolution} {Integral}},
journal = {Fractional calculus and applied analysis},
pages = {395--402},
year = {2010},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a4/}
}
Nishiwaki, Junichi; Owa, Shigeyoshi. An Application of Convolution Integral. Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 395-402. http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a4/