Fekete-Szegö Inequality for Universally Prestarlike Functions
Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 385-394
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The universally prestarlike functions of order α ≤ 1 in the slit domain
Λ = C [1;∞) have been recently introduced by S. Ruscheweyh. This notion
generalizes the corresponding one for functions in the unit disk Δ (and other
circular domains in C). In this paper, we obtain the coefficient inequalities
and the Fekete-Szegö inequality for such functions.
Keywords:
Prestarlike Functions, Universally Prestarlike Functions, Coeffcients, Fekete-Szegö Inequality
@article{FCAA_2010_13_4_a3,
author = {Shanmugam, T. and Lourthu Mary, J.},
title = {Fekete-Szeg\"o {Inequality} for {Universally} {Prestarlike} {Functions}},
journal = {Fractional calculus and applied analysis},
pages = {385--394},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a3/}
}
TY - JOUR AU - Shanmugam, T. AU - Lourthu Mary, J. TI - Fekete-Szegö Inequality for Universally Prestarlike Functions JO - Fractional calculus and applied analysis PY - 2010 SP - 385 EP - 394 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a3/ LA - en ID - FCAA_2010_13_4_a3 ER -
Shanmugam, T.; Lourthu Mary, J. Fekete-Szegö Inequality for Universally Prestarlike Functions. Fractional calculus and applied analysis, Tome 13 (2010) no. 4, pp. 385-394. http://geodesic.mathdoc.fr/item/FCAA_2010_13_4_a3/