Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations
Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 281-294.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we prove the existence of solutions for fractional impulsive differential equations with antiperiodic boundary condition in Banach spaces. The results are obtained by using fractional calculus' techniques and the fixed point theorems.
Keywords: Impulsive Fractional Differential Equations, Contraction Principle, Antiperiodic Boundary Conditions, Sadovskii Theorem
@article{FCAA_2010_13_3_a3,
     author = {Anguraj, A. and Karthikeyan, P.},
     title = {Anti-Periodic {Boundary} {Value} {Problem} for {Impulsive} {Fractional} {Integro} {Differential} {Equations}},
     journal = {Fractional calculus and applied analysis},
     pages = {281--294},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a3/}
}
TY  - JOUR
AU  - Anguraj, A.
AU  - Karthikeyan, P.
TI  - Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 281
EP  - 294
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a3/
LA  - en
ID  - FCAA_2010_13_3_a3
ER  - 
%0 Journal Article
%A Anguraj, A.
%A Karthikeyan, P.
%T Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations
%J Fractional calculus and applied analysis
%D 2010
%P 281-294
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a3/
%G en
%F FCAA_2010_13_3_a3
Anguraj, A.; Karthikeyan, P. Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations. Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 281-294. http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a3/