Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations
Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 281-294
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we prove the existence of solutions for fractional impulsive differential equations with antiperiodic boundary condition in Banach spaces. The results are obtained by using fractional calculus' techniques and the fixed point theorems.
Keywords:
Impulsive Fractional Differential Equations, Contraction Principle, Antiperiodic Boundary Conditions, Sadovskii Theorem
@article{FCAA_2010_13_3_a3,
author = {Anguraj, A. and Karthikeyan, P.},
title = {Anti-Periodic {Boundary} {Value} {Problem} for {Impulsive} {Fractional} {Integro} {Differential} {Equations}},
journal = {Fractional calculus and applied analysis},
pages = {281--294},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a3/}
}
TY - JOUR AU - Anguraj, A. AU - Karthikeyan, P. TI - Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations JO - Fractional calculus and applied analysis PY - 2010 SP - 281 EP - 294 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a3/ LA - en ID - FCAA_2010_13_3_a3 ER -
%0 Journal Article %A Anguraj, A. %A Karthikeyan, P. %T Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations %J Fractional calculus and applied analysis %D 2010 %P 281-294 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a3/ %G en %F FCAA_2010_13_3_a3
Anguraj, A.; Karthikeyan, P. Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations. Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 281-294. http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a3/