Mixed Fractional Integration Operators in Mixed Weighted Hölder Spaces
Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 245-260
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We study mixed Riemann-Liouville integrals of functions of two variables in Hölder spaces of different orders in each variables. We consider Hölder spaces defined both by first order differences in each variable and also by the mixed second order difference, the main interest being in the evaluation of the latter for the mixed fractional integral in both the cases where the density of the integral belongs to the Hölder class defined by usual or mixed differences. The obtained results extend the well known theorem of Hardy-Littlewood for one-dimensional fractional integrals to the case of mixed Hölderness. We cover also the weighted case with power weights.
Keywords:
Functions of two Variables, Riemann-Liouville Integrals, Mixed Fractional Integrals, Mixed Finite Differences, Hölder Spaces of Mixed Order
@article{FCAA_2010_13_3_a1,
author = {Mamatov, Tulkin and Samko, Stefan},
title = {Mixed {Fractional} {Integration} {Operators} in {Mixed} {Weighted} {H\"older} {Spaces}},
journal = {Fractional calculus and applied analysis},
pages = {245--260},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a1/}
}
TY - JOUR AU - Mamatov, Tulkin AU - Samko, Stefan TI - Mixed Fractional Integration Operators in Mixed Weighted Hölder Spaces JO - Fractional calculus and applied analysis PY - 2010 SP - 245 EP - 260 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a1/ LA - en ID - FCAA_2010_13_3_a1 ER -
Mamatov, Tulkin; Samko, Stefan. Mixed Fractional Integration Operators in Mixed Weighted Hölder Spaces. Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 245-260. http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a1/