Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay
Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 225-244
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
This paper deals with the existence and uniqueness of solutions of two classes of partial impulsive hyperbolic differential equations with fixed time impulses and state-dependent delay involving the Caputo fractional derivative. Our results are obtained upon suitable fixed point theorems.
Keywords:
Impulsive Functional Differential Equations, Fractional Order Differential Equation, Left-Sided Mixed Riemann-Liouville Integral, Caputo Fractional-Order Derivative, State-Dependent Delay, Fixed Point
@article{FCAA_2010_13_3_a0,
author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak},
title = {Impulsive {Partial} {Hyperbolic} {Functional} {Differential} {Equations} of {Fractional} {Order} with {State-Dependent} {Delay}},
journal = {Fractional calculus and applied analysis},
pages = {225--244},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a0/}
}
TY - JOUR AU - Abbas, Saïd AU - Benchohra, Mouffak TI - Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay JO - Fractional calculus and applied analysis PY - 2010 SP - 225 EP - 244 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a0/ LA - en ID - FCAA_2010_13_3_a0 ER -
%0 Journal Article %A Abbas, Saïd %A Benchohra, Mouffak %T Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay %J Fractional calculus and applied analysis %D 2010 %P 225-244 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a0/ %G en %F FCAA_2010_13_3_a0
Abbas, Saïd; Benchohra, Mouffak. Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay. Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 225-244. http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a0/