Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay
Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 225-244.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

This paper deals with the existence and uniqueness of solutions of two classes of partial impulsive hyperbolic differential equations with fixed time impulses and state-dependent delay involving the Caputo fractional derivative. Our results are obtained upon suitable fixed point theorems.
Keywords: Impulsive Functional Differential Equations, Fractional Order Differential Equation, Left-Sided Mixed Riemann-Liouville Integral, Caputo Fractional-Order Derivative, State-Dependent Delay, Fixed Point
@article{FCAA_2010_13_3_a0,
     author = {Abbas, Sa{\"\i}d and Benchohra, Mouffak},
     title = {Impulsive {Partial} {Hyperbolic} {Functional} {Differential} {Equations} of {Fractional} {Order} with {State-Dependent} {Delay}},
     journal = {Fractional calculus and applied analysis},
     pages = {225--244},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a0/}
}
TY  - JOUR
AU  - Abbas, Saïd
AU  - Benchohra, Mouffak
TI  - Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 225
EP  - 244
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a0/
LA  - en
ID  - FCAA_2010_13_3_a0
ER  - 
%0 Journal Article
%A Abbas, Saïd
%A Benchohra, Mouffak
%T Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay
%J Fractional calculus and applied analysis
%D 2010
%P 225-244
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a0/
%G en
%F FCAA_2010_13_3_a0
Abbas, Saïd; Benchohra, Mouffak. Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay. Fractional calculus and applied analysis, Tome 13 (2010) no. 3, pp. 225-244. http://geodesic.mathdoc.fr/item/FCAA_2010_13_3_a0/