Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation
Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 57-68.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problem for the time-space fractional diffusion equation expressed in terms of the Caputo time-fractional derivative and a generalized Riemann-Liouville space-fractional derivative.
Keywords: Caputo Fractional Derivative, Fractional Diffusion Equation, Laplace Transform, Fractional Fourier Transform
@article{FCAA_2010_13_1_a4,
     author = {Nikolova, Yanka and Boyadjiev, Lyubomir},
     title = {Integral {Transforms} {Method} to {Solve} a {Time-Space} {Fractional} {Diffusion} {Equation}},
     journal = {Fractional calculus and applied analysis},
     pages = {57--68},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a4/}
}
TY  - JOUR
AU  - Nikolova, Yanka
AU  - Boyadjiev, Lyubomir
TI  - Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 57
EP  - 68
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a4/
LA  - en
ID  - FCAA_2010_13_1_a4
ER  - 
%0 Journal Article
%A Nikolova, Yanka
%A Boyadjiev, Lyubomir
%T Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation
%J Fractional calculus and applied analysis
%D 2010
%P 57-68
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a4/
%G en
%F FCAA_2010_13_1_a4
Nikolova, Yanka; Boyadjiev, Lyubomir. Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation. Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 57-68. http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a4/