Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation
Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 57-68
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is
applied for solving Cauchy-type problem for the time-space fractional diffusion equation expressed in terms of the Caputo time-fractional derivative and a generalized Riemann-Liouville space-fractional derivative.
Keywords:
Caputo Fractional Derivative, Fractional Diffusion Equation, Laplace Transform, Fractional Fourier Transform
@article{FCAA_2010_13_1_a4,
author = {Nikolova, Yanka and Boyadjiev, Lyubomir},
title = {Integral {Transforms} {Method} to {Solve} a {Time-Space} {Fractional} {Diffusion} {Equation}},
journal = {Fractional calculus and applied analysis},
pages = {57--68},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a4/}
}
TY - JOUR AU - Nikolova, Yanka AU - Boyadjiev, Lyubomir TI - Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation JO - Fractional calculus and applied analysis PY - 2010 SP - 57 EP - 68 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a4/ LA - en ID - FCAA_2010_13_1_a4 ER -
%0 Journal Article %A Nikolova, Yanka %A Boyadjiev, Lyubomir %T Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation %J Fractional calculus and applied analysis %D 2010 %P 57-68 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a4/ %G en %F FCAA_2010_13_1_a4
Nikolova, Yanka; Boyadjiev, Lyubomir. Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation. Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 57-68. http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a4/