On Y. Nievergelt's Inversion Formula for the Radon Transform
Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 43-56
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In 1986 Y. Nievergelt suggested a simple formula which allows to reconstruct a continuous compactly supported function on the 2-plane from its Radon transform. This formula falls into the scope of the classical convolution-backprojection method. We show that elementary tools of fractional calculus can be used to obtain more general inversion formulas for the k-plane Radon transform of continuous and L^p functions on R^n for all 1 ≤ k n. Further generalizations and open problems are discussed.
Keywords:
K-plane Radon Transform, Nievergelt's Inversion Formula, Convolution-Backprojection Method
@article{FCAA_2010_13_1_a3,
author = {Ournycheva, E. and Rubin, B.},
title = {On {Y.} {Nievergelt's} {Inversion} {Formula} for the {Radon} {Transform}},
journal = {Fractional calculus and applied analysis},
pages = {43--56},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a3/}
}
TY - JOUR AU - Ournycheva, E. AU - Rubin, B. TI - On Y. Nievergelt's Inversion Formula for the Radon Transform JO - Fractional calculus and applied analysis PY - 2010 SP - 43 EP - 56 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a3/ LA - en ID - FCAA_2010_13_1_a3 ER -
Ournycheva, E.; Rubin, B. On Y. Nievergelt's Inversion Formula for the Radon Transform. Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a3/