Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s
Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 21-42
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We give the proofs of the existence and regularity of the solutions in the space C^∞ (t > 0;H^(s+2) (R^n)) ∩ C^0(t ≧ 0;H^s(R^n)); s ∊ R, for the 1-term, 2-term,..., n-term time-fractional equation evaluated from the time fractional equation of distributed order with spatial Laplace operator Δx ...
Keywords:
Time-Fractional Diffusion-Wave Problem, Existence Theorems, Exact Solutions, Sobolev Spaces, Regularity
@article{FCAA_2010_13_1_a2,
author = {Stojanovi\'c, Mirjana},
title = {Well-Posedness of {Diffusion-Wave} {Problem} with {Arbitrary} {Finite} {Number} of {Time} {Fractional} {Derivatives} in {Sobolev} {Spaces} {H^s}},
journal = {Fractional calculus and applied analysis},
pages = {21--42},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a2/}
}
TY - JOUR AU - Stojanović, Mirjana TI - Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s JO - Fractional calculus and applied analysis PY - 2010 SP - 21 EP - 42 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a2/ LA - en ID - FCAA_2010_13_1_a2 ER -
%0 Journal Article %A Stojanović, Mirjana %T Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s %J Fractional calculus and applied analysis %D 2010 %P 21-42 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a2/ %G en %F FCAA_2010_13_1_a2
Stojanović, Mirjana. Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s. Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 21-42. http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a2/