Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s
Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 21-42.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We give the proofs of the existence and regularity of the solutions in the space C^∞ (t > 0;H^(s+2) (R^n)) ∩ C^0(t ≧ 0;H^s(R^n)); s ∊ R, for the 1-term, 2-term,..., n-term time-fractional equation evaluated from the time fractional equation of distributed order with spatial Laplace operator Δx ...
Keywords: Time-Fractional Diffusion-Wave Problem, Existence Theorems, Exact Solutions, Sobolev Spaces, Regularity
@article{FCAA_2010_13_1_a2,
     author = {Stojanovi\'c, Mirjana},
     title = {Well-Posedness of {Diffusion-Wave} {Problem} with {Arbitrary} {Finite} {Number} of {Time} {Fractional} {Derivatives} in {Sobolev} {Spaces} {H^s}},
     journal = {Fractional calculus and applied analysis},
     pages = {21--42},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a2/}
}
TY  - JOUR
AU  - Stojanović, Mirjana
TI  - Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s
JO  - Fractional calculus and applied analysis
PY  - 2010
SP  - 21
EP  - 42
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a2/
LA  - en
ID  - FCAA_2010_13_1_a2
ER  - 
%0 Journal Article
%A Stojanović, Mirjana
%T Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s
%J Fractional calculus and applied analysis
%D 2010
%P 21-42
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a2/
%G en
%F FCAA_2010_13_1_a2
Stojanović, Mirjana. Well-Posedness of Diffusion-Wave Problem with Arbitrary Finite Number of Time Fractional Derivatives in Sobolev Spaces H^s. Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 21-42. http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a2/