Theorem for Series in Three-Parameter Mittag-Leffler Function
Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 9-20
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The new result presented here is a theorem involving series in the three-parameter Mittag-Leffler function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional differential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Leffler function.
Keywords:
Fractional Derivatives, Mittag-Leffler Function, Electrical Circuits
@article{FCAA_2010_13_1_a1,
author = {Soubhia, Ana and Camargo, Rubens and Oliveira, Edmundo and Vaz, Jayme},
title = {Theorem for {Series} in {Three-Parameter} {Mittag-Leffler} {Function}},
journal = {Fractional calculus and applied analysis},
pages = {9--20},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a1/}
}
TY - JOUR AU - Soubhia, Ana AU - Camargo, Rubens AU - Oliveira, Edmundo AU - Vaz, Jayme TI - Theorem for Series in Three-Parameter Mittag-Leffler Function JO - Fractional calculus and applied analysis PY - 2010 SP - 9 EP - 20 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a1/ LA - en ID - FCAA_2010_13_1_a1 ER -
%0 Journal Article %A Soubhia, Ana %A Camargo, Rubens %A Oliveira, Edmundo %A Vaz, Jayme %T Theorem for Series in Three-Parameter Mittag-Leffler Function %J Fractional calculus and applied analysis %D 2010 %P 9-20 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a1/ %G en %F FCAA_2010_13_1_a1
Soubhia, Ana; Camargo, Rubens; Oliveira, Edmundo; Vaz, Jayme. Theorem for Series in Three-Parameter Mittag-Leffler Function. Fractional calculus and applied analysis, Tome 13 (2010) no. 1, pp. 9-20. http://geodesic.mathdoc.fr/item/FCAA_2010_13_1_a1/