Impulsive Fractional Differential Inclusions Involving the Caputo Fractional Derivative
Fractional calculus and applied analysis, Tome 12 (2009) no. 1, pp. 15-38.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper, we establish sufficient conditions for the existence of solutions for a class of initial value problem for impulsive fractional differential inclusions involving the Caputo fractional derivative. Both cases of convex and nonconvex valued right-hand side are considered. The topological structure of the set of solutions is also considered.
Keywords: Initial Value Problem, Fractional Differential Inclusions, Impulses, Caputo Fractional Derivative, Fractional Integral, Selection, Existence, Fixed Point Theorem, 26A33, 34A37
@article{FCAA_2009_12_1_a1,
     author = {Ait Dads, E. and Benchohra, M. and Hamani, S.},
     title = {Impulsive {Fractional} {Differential} {Inclusions} {Involving} the {Caputo} {Fractional} {Derivative}},
     journal = {Fractional calculus and applied analysis},
     pages = {15--38},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2009_12_1_a1/}
}
TY  - JOUR
AU  - Ait Dads, E.
AU  - Benchohra, M.
AU  - Hamani, S.
TI  - Impulsive Fractional Differential Inclusions Involving the Caputo Fractional Derivative
JO  - Fractional calculus and applied analysis
PY  - 2009
SP  - 15
EP  - 38
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2009_12_1_a1/
LA  - en
ID  - FCAA_2009_12_1_a1
ER  - 
%0 Journal Article
%A Ait Dads, E.
%A Benchohra, M.
%A Hamani, S.
%T Impulsive Fractional Differential Inclusions Involving the Caputo Fractional Derivative
%J Fractional calculus and applied analysis
%D 2009
%P 15-38
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2009_12_1_a1/
%G en
%F FCAA_2009_12_1_a1
Ait Dads, E.; Benchohra, M.; Hamani, S. Impulsive Fractional Differential Inclusions Involving the Caputo Fractional Derivative. Fractional calculus and applied analysis, Tome 12 (2009) no. 1, pp. 15-38. http://geodesic.mathdoc.fr/item/FCAA_2009_12_1_a1/