Fractional Integration and Fractional Differentiation of the M-Series
Fractional calculus and applied analysis, Tome 11 (2008) no. 2, pp. 187-191.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper a new special function called as M-series is introduced. This series is a particular case of the H-function of Inayat-Hussain. The M-series is interesting because the pFq -hypergeometric function and the Mittag-Leffler function follow as its particular cases, and these functions have recently found essential applications in solving problems in physics, biology, engineering and applied sciences. Let us note that the Mittag-Leffler function occurs as solution of fractional integral equations in those area. In this short note we have obtained formulas for the fractional integral and fractional derivative of the M-series.
Keywords: Fractional Calculus Operators, Special Functions, 26A33, 33C60, 44A15
@article{FCAA_2008_11_2_a6,
     author = {Sharma, Manoj},
     title = {Fractional {Integration} and {Fractional} {Differentiation} of the {M-Series}},
     journal = {Fractional calculus and applied analysis},
     pages = {187--191},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a6/}
}
TY  - JOUR
AU  - Sharma, Manoj
TI  - Fractional Integration and Fractional Differentiation of the M-Series
JO  - Fractional calculus and applied analysis
PY  - 2008
SP  - 187
EP  - 191
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a6/
LA  - en
ID  - FCAA_2008_11_2_a6
ER  - 
%0 Journal Article
%A Sharma, Manoj
%T Fractional Integration and Fractional Differentiation of the M-Series
%J Fractional calculus and applied analysis
%D 2008
%P 187-191
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a6/
%G en
%F FCAA_2008_11_2_a6
Sharma, Manoj. Fractional Integration and Fractional Differentiation of the M-Series. Fractional calculus and applied analysis, Tome 11 (2008) no. 2, pp. 187-191. http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a6/