Design of Fractional Order Digital Differentiators and Integrators Using Indirect Discretization
Fractional calculus and applied analysis, Tome 11 (2008) no. 2, pp. 143-151
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper, design of fractional order digital differentiators and integrators using indirect discretization is presented. The proposed approach is based on using continued fraction expansion to find the rational approximation of the fractional order operator, s^α. The rational approximation thus obtained is discretized by using s to z transforms. The proposed approach is tested for differentiators and integrators of orders 1/4 and 1/2. The results obtained compare favorably with the ideal characteristics.
Keywords:
Fractional Order Integrator, Fractional Order Differentiator, Continued Fraction Expansion, Al-Alaoui Transform
@article{FCAA_2008_11_2_a1,
author = {Krishna, B. and Reddy, K.},
title = {Design of {Fractional} {Order} {Digital} {Differentiators} and {Integrators} {Using} {Indirect} {Discretization}},
journal = {Fractional calculus and applied analysis},
pages = {143--151},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a1/}
}
TY - JOUR AU - Krishna, B. AU - Reddy, K. TI - Design of Fractional Order Digital Differentiators and Integrators Using Indirect Discretization JO - Fractional calculus and applied analysis PY - 2008 SP - 143 EP - 151 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a1/ LA - en ID - FCAA_2008_11_2_a1 ER -
%0 Journal Article %A Krishna, B. %A Reddy, K. %T Design of Fractional Order Digital Differentiators and Integrators Using Indirect Discretization %J Fractional calculus and applied analysis %D 2008 %P 143-151 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a1/ %G en %F FCAA_2008_11_2_a1
Krishna, B.; Reddy, K. Design of Fractional Order Digital Differentiators and Integrators Using Indirect Discretization. Fractional calculus and applied analysis, Tome 11 (2008) no. 2, pp. 143-151. http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a1/