On Generalized Weyl Fractional q-Integral Operator Involving Generalized Basic Hypergeometric Functions
Fractional calculus and applied analysis, Tome 11 (2008) no. 2, pp. 129-142.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Fractional q-integral operators of generalized Weyl type, involving generalized basic hypergeometric functions and a basic analogue of Fox’s H-function have been investigated. A number of integrals involving various q-functions have been evaluated as applications of the main results.
Keywords: Generalized Weyl Fractional q-Integral Operator, Basic Integration, Generalized Basic Hypergeometric Functions, Basic Analogue of Fox's H-Function, 33D60, 33D90, 26A33
@article{FCAA_2008_11_2_a0,
     author = {Yadav, R. and Purohit, S. and Kalla, S.},
     title = {On {Generalized} {Weyl} {Fractional} {q-Integral} {Operator} {Involving} {Generalized} {Basic} {Hypergeometric} {Functions}},
     journal = {Fractional calculus and applied analysis},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a0/}
}
TY  - JOUR
AU  - Yadav, R.
AU  - Purohit, S.
AU  - Kalla, S.
TI  - On Generalized Weyl Fractional q-Integral Operator Involving Generalized Basic Hypergeometric Functions
JO  - Fractional calculus and applied analysis
PY  - 2008
SP  - 129
EP  - 142
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a0/
LA  - en
ID  - FCAA_2008_11_2_a0
ER  - 
%0 Journal Article
%A Yadav, R.
%A Purohit, S.
%A Kalla, S.
%T On Generalized Weyl Fractional q-Integral Operator Involving Generalized Basic Hypergeometric Functions
%J Fractional calculus and applied analysis
%D 2008
%P 129-142
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a0/
%G en
%F FCAA_2008_11_2_a0
Yadav, R.; Purohit, S.; Kalla, S. On Generalized Weyl Fractional q-Integral Operator Involving Generalized Basic Hypergeometric Functions. Fractional calculus and applied analysis, Tome 11 (2008) no. 2, pp. 129-142. http://geodesic.mathdoc.fr/item/FCAA_2008_11_2_a0/