Generalized Fractional Evolution Equation
Fractional calculus and applied analysis, Tome 10 (2007) no. 4, pp. 375-398
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we study the generalized Riemann-Liouville (resp. Caputo)
time fractional evolution equation in infinite dimensions. We show that the
explicit solution is given as the convolution between the initial condition
and a generalized function related to the Mittag-Leffler function.
The fundamental solution corresponding to the Riemann-Liouville time fractional
evolution equation does not admit a probabilistic representation while for
the Caputo time fractional evolution equation it is related to the inverse
stable subordinators.
Keywords:
Generalized Functions, Convolution Product, Generalized Gross Laplacian, Riemann-Liouville Derivative, Caputo Derivative, 46F25, 26A33, 46G20
@article{FCAA_2007_10_4_a2,
author = {Da Silva, J. L. and Erraoui, M. and Ouerdiane, H.},
title = {Generalized {Fractional} {Evolution} {Equation}},
journal = {Fractional calculus and applied analysis},
pages = {375--398},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a2/}
}
TY - JOUR AU - Da Silva, J. L. AU - Erraoui, M. AU - Ouerdiane, H. TI - Generalized Fractional Evolution Equation JO - Fractional calculus and applied analysis PY - 2007 SP - 375 EP - 398 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a2/ LA - en ID - FCAA_2007_10_4_a2 ER -
Da Silva, J. L.; Erraoui, M.; Ouerdiane, H. Generalized Fractional Evolution Equation. Fractional calculus and applied analysis, Tome 10 (2007) no. 4, pp. 375-398. http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a2/